Skip to main content

Information Electronics in the Nanotechnology Era

  • Chapter
  • 4016 Accesses

Abstract

Information technology (IT) is entering the nanoelectronics era. Conventional CMOS (complementary metel oxide semiconductor) technology is approaching its performance limit. Though the minimum feature size of CMOS microelectronics is already in the range of nanometer, reduction of the feature size for achieving much higher ULSI (ultra-large scale integration) system performance and performance energy efficiency is still constantly required for satisfying the need of today’s fast-paced IT development. The main directions of technological development in the new era include: (1) overcoming the technical barriers of CMOS scaling-down and pushing the technology forward as quickly as possible to reach its physical limit, (2) developing non-traditional silicon (Si) MOS and non-MOS binary new logic devices to break through the CMOS device performance limit, and (3) establishing and realize a new, non-traditional information processing model to greatly enhance the processing power and power-performance efficiency. In this article, first, the progress of the nanoscale CMOS technology is described and its physical limit discussed. Then, several promising non-CMOS nanoelectronic devices are introduced and the prospect of nanoelectronics based on these devices is profiled. Finally, as one of the prospective new models for information processing, quantum computation is introduced. Its physical realization methods and the energy requirement for the solid state quantum computer chip are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore G. E., (1965), Cramming more circuits on chips, Electron, 19: 114

    Google Scholar 

  2. Moore G. E., (1975), Progress in digital electronics, IEDM Tech. Dig., 11

    Google Scholar 

  3. Dennard R. H., (1974), Design of ion implanted MOSFET with very small dimensions, IEEE Solid State Circuits SC-9: 256

    Article  Google Scholar 

  4. Taur Y., et al., (1997), CMOS scaling into the nanometer regime, In: Proc. IEEE, 85: 486

    Article  Google Scholar 

  5. Li Z. and R. Zhou, (2000), ULSI devices, Circuits and System Science Press

    Google Scholar 

  6. Ma Y., (2001), The quantum mechanism effects and quantum tunneling in ULSI devices, Tsinghua Univ. Doctorial Dissertation

    Google Scholar 

  7. Chen Z. and J. Wang, (1999), Basic material physics for semiconductor devices. Beijing: Science Press, 69

    Google Scholar 

  8. Keyes R. W., (1975), The effect of randomness in distribution of impurity atoms of FET threshold, Appl. Phys., 18: 251

    Article  Google Scholar 

  9. Asenov A., et al., (1999), Quantum mechanical enhancement of random dopant induced threshold voltage fluctuations and lowering in sub 0.1 microns MOSFETs, IEDM Tech. Dig., 535

    Google Scholar 

  10. Keyes R. W., Physical limits in information processing, Advances in Electronics and Electron Physics, 70: 154

    Google Scholar 

  11. Toriumi A., et al., (1995), Performance and reliability concerns of ultra-thin SOI and ultra-thin gate oxide MOSFETs, IEDM Tech. Dig., 847

    Google Scholar 

  12. Wong H. P., D. J. Frank, and P. M. Solomon, (1998), Device design consideration for double gate ground-plane and single gate ultra-thin SOI MOSFETs at 25 nm channel length generation, IEDM Tech. Dig., 497

    Google Scholar 

  13. Oh S-H., D. Monroe, J. M. Hergenrother, (2000), Analytic description of short channel effects in fully depleted double-gate and surrounding-gate MOSFETs. IEEE Electron. Device Lett., 25: 445

    Google Scholar 

  14. Huang X., et al., (1999), Sub 50-nm Fin-FET PMOS, IEDM Tech. Dig., 67

    Google Scholar 

  15. Auth C. P., J. D. Plummer, (1997), Scaling theory for cylindrical fully depleted surrounding gate MOSFETs, IEEE Electron. Device Lett., 18: 24

    Article  Google Scholar 

  16. Plummer J. D., (2001), Material and process limits in silicon VLSI technology, In Proc. IEEE, 89: 240

    Article  CAS  Google Scholar 

  17. Roy P. K. and I. C. Kizilaili, (1998), Stacked high-k gate dielectric for gigascale integration MOS technology, Appl. Phys. Lett., 72: 2835

    Article  CAS  Google Scholar 

  18. Wilk G. D., R. M. Wallace, I. M. Mi. Anthony, (2000), Hafnium and zirconium silicates for advanced gate dielectrics, J. Appl. Phys., 87: 484

    Article  CAS  Google Scholar 

  19. Delhougne R., et al., (2004), A simple and effective method for fabricating high performance strained silicon MOSFET devices, J. Solid State Electronics, 48: 1307

    Article  CAS  Google Scholar 

  20. Ng K. K., W. T. Lynch, (1996), Analysis of gate voltage dependent series resistance of MOSFETs, IEEE Trans. Electron Devices, 33: 965

    Article  Google Scholar 

  21. Osburn C. M., K. R. Bellur, (1998), Low parasitic resistance contacts for scaled ULSI devices, Thin Solid Films, 332: 428

    Article  CAS  Google Scholar 

  22. Frank D. J., et al., (2001), Device scaling limits of MOSFETs and their application dependencies, In Proc. IEEE, 89: 259

    Article  CAS  Google Scholar 

  23. Havemann R. H., I. A. Hutchby, (2001), High performance interconnects: An integration overview, In Proc. IEEE, 89: 586

    Article  CAS  Google Scholar 

  24. Miller D. A. B., (1999), On chip and chip to chip optical interconnects-status and prospects, In: Interconnect technology beyond roadmap, Saraswat KC Ed. SRC/SEMATECH/MARCO White Paper

    Google Scholar 

  25. Miller D. A. B., (2000), Rationale and challenges for optical interconnects to electronic chips, In Proc. IEEE, 88: 728

    Article  Google Scholar 

  26. Chang M. F., (1999), RF/wireless interconnect for enter-and intra-chip communications, In: Interconnect technology beyond roadmap, Saraswat KC Ed. SRC/SEMATECH/MARCO White Paper

    Google Scholar 

  27. Krishnamoorthy A., et al., (1995), 3D integration of modulators over active sub-micron CMOS circuits: 375 Mb/s t transimpedance receiver-transmitter circuit, IEEE Photon. Technol. Lett., 7: 1288

    Article  Google Scholar 

  28. Rahman A., D. Antoniadis, and A. Agarwal, Study of 3D integration of high performance logic (1999), In: Interconnect technology beyond roadmap, Saraswat KC Ed. SRC/ SEMATECH/MARCO White Paper

    Google Scholar 

  29. Chang L. L., L. Esaki, and R. Tsu, (1974), Resonant tunneling in semiconductor double barriers, Appl. Phys. Lett., 24: 593

    Article  CAS  Google Scholar 

  30. Jian P. S., et al., (1998), Resonant tunneling diodes-models and properties, In Proc. IEEE, 86: 641

    Article  Google Scholar 

  31. Mazumdler, et al., (1998), Digital circuit applications of resonant tunneling diodes, In Proc. IEEE, 86: 664

    Article  Google Scholar 

  32. Methews R. H., et al., (1999), A new RTD-FET logic family, In Proc. IEEE, 87: 596

    Article  Google Scholar 

  33. Likharev K. K., et al., (1999), Singe electron devices and their applications, In Proc. IEEE, 87: 606

    Article  CAS  Google Scholar 

  34. van Houten H., C. W. J. Beenaker, and A. A. A. Staring, Single Charge Tunneling, (1992), In: Coulomb blockade oscillations in semiconductor nanostructures, Grabert H, Devoret M. H., Eds. New York: Plenum, 167–216

    Google Scholar 

  35. Beenakker C. W. J., (1991), Theory of coulomb-blockade oscillations in conductance of a quantum dot, Phys. Rev. B, 44: 1646

    Article  Google Scholar 

  36. Ishikuro H., et al., (1996), Coulomb blockade oscillations at room temperature in a Si quantum wire MOSFET fabricated by anisotropic etching on an SOI substrate, Appl. Phys. Lett., 68: 3585

    Article  CAS  Google Scholar 

  37. Yano K., et al., (1998), A 128 MB, early prototype for gigascale single electron memories, ICSSCC’ 98 Dig. Tech. Papers: 344

    Google Scholar 

  38. Takahashi Y., et al., (1995), A fabrication technique for single electron transistor operating in room temperature, Electron Lett., 31: 136

    Article  CAS  Google Scholar 

  39. Chen R. H., K. K. Likharev, (1998), Multiple-junction single electron transistors for digital applications, Appl. Phys. Lett., 72: 61

    Article  CAS  Google Scholar 

  40. Chen R. H., A. N. Korotkov, and K. K. Likharev, (1996), Single electron transistor logic, Appl. Phys. Lett., 68: 1954

    Article  CAS  Google Scholar 

  41. Avouris P., et al., (2003), Carbon nano-tube electronics, In Proc. IEEE, 91: 17

    Google Scholar 

  42. Saito R., et al., (1992), Electronic structure of chiral graphene tubules, Appl. Phys. Lett., 60: 2204

    Article  CAS  Google Scholar 

  43. Dresselhaus M. S., G. Dresselhaus, P. Avouris, eds., (2001), Carbon nano-tubes synthesis, structure properties, and applications, Springer

    Google Scholar 

  44. Huang Z. P., et al., (1998), Growth of highly oriented carbon nano-tubes by plasmaenhanced hot filament chemical vapor deposition, Appl. Phys. Lett., 73: 3854

    Article  Google Scholar 

  45. Ren Z. F., et al., (1998), Synthesis of large arrays of well-aligned carbon nano-tube on glass, Science, 282: 1105

    Article  CAS  Google Scholar 

  46. Johnson M., (2003), Overview of spin transport electronics in metals, In Proc. IEEE, 91: 652

    Article  CAS  Google Scholar 

  47. Baibich, et al., (1998), Giant magneto-resistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett., 61: 2472

    Article  Google Scholar 

  48. Daughton J., (2003), Spin-dependent sensors, In: Proc. IEEE, 91: 681

    Article  Google Scholar 

  49. Tehrani S., et al., (2003), Magnetoresistive random access memory using magnetic tunneling junctions, In: Proc. IEEE, 91: 703

    Article  Google Scholar 

  50. Tehrani S., et al., (1999), High density sub-micron magneto-resistive random access memory, J. Appl. Phys., 85: 5822

    Article  CAS  Google Scholar 

  51. Datta A., B. Das, Electronic analog of electro-optic modulator, Appl. Phys. Lett., 56: 665

    Google Scholar 

  52. Ting D. Z. Y., et al. (2003), Rashba effect resonant tunneling spin filter, In Proc. IEEE, 91: 741

    Article  CAS  Google Scholar 

  53. Jonker B. T., (2003), Progress toward electrical injection of spin polarized electrons into semiconductors, In Proc. IEEE, 91:727

    Article  CAS  Google Scholar 

  54. Hayakawa, et al., Superconducting digital electronics, In Proc. IEEE, 92: 1549

    Google Scholar 

  55. Clark J., (1989), Principles and applications of SQUIDs, In Proc. IEEE, 77: 1208

    Article  Google Scholar 

  56. Kittel C., (1979), In: Introduction to Solid State Physics. Translated by Yang S., et al, Beijing, China: Science Press, Chapter 12 407–430

    Google Scholar 

  57. Hayakawa H., et al., (2004), Superconducting digital electronics, In: Proc. IEEE, 92: 1549

    Article  CAS  Google Scholar 

  58. Likharev K. K., V. K. Semenov, (1991), RSFQ logic/memory family: A new Josephson-junction technology for terahertz frequency digital systems, IEEE Trans. Appl. Superconduct., 1: 1

    Article  Google Scholar 

  59. Chen W., et al., (1999), Rapid single flux quantum T-flip-flop operating up to 770 GHz, IEEE Trans, Appl. Superconduct, 9: 3212

    Article  Google Scholar 

  60. Aviram A., eds., (1989), Molecular electronics: Science and technology. New York: United Engineering Trustees

    Google Scholar 

  61. Aviram A., M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett., 29: 277

    Google Scholar 

  62. Reed M. A., et al., (1997), Conductance of a molecular junction, Science, 278: 252

    Article  CAS  Google Scholar 

  63. Chen J., et al., (1999), Large on-off ratios and negative differential resistance in a molecular electronics device, Science, 286: 1550

    Article  CAS  Google Scholar 

  64. Irie M., (1993), Light triggered molecular switch, Mol. Cryst. Lig. Cryst., 227: 263; and Irie M., et al., (2002), A digital fluorescent molecular photo-switch, Nature, 420: 759

    Article  CAS  Google Scholar 

  65. Collier C. P., et al. (2000), A catenae-based solid state electrically reconfigurable switch, Science, 289: 1172

    Article  CAS  Google Scholar 

  66. Craighead H. G., (2000), Nano electromechanical systems, Science, 290: 1532

    Article  CAS  Google Scholar 

  67. Dequesnes M., et al, (2002), Calculations of pull-in voltages for carbon nano-tube-based nano electromechanical switches. Nanotechnology, 13: 120

    Article  Google Scholar 

  68. Chan H. B., et al., (2001), Nonlinear micromechanical Casimier oscillator, Phys. Rev. Lett., 87: 211801

    Article  CAS  Google Scholar 

  69. [69] Krommer H., et al., (2000), Nano-mechanical oscillators operating as a charge detectors in nonlinear regime, Europhys. Lett., 50: 101

    Google Scholar 

  70. Sapmaz S., et al., (2003), Carbon-nano-tubes as a nano electro mechanical system. Phys. Rev. B, 67: 235414

    Article  Google Scholar 

  71. Armour A. D., Blencowe M. P., (2001), Possibility of an electro-mechanical which-path interferometer, Phys. Rev. B, 64: 035311

    Article  Google Scholar 

  72. Blencowe M. P., M. N. Wybourne, (2000), Quantum squeezing of mechanical motion for micron sized cantilevers. Physical B, 280: 555

    Article  CAS  Google Scholar 

  73. Nielsen M. A., I. L. Chuang, eds., (2000), Quantum Computation and Quantum Information. Cambridge: Cambridge Univ. Press

    Google Scholar 

  74. Legget J., (1980), Macroscopic quantum systems and the quantum measurement. Prog. Theor., Phys. Suppl: 80–100

    Article  Google Scholar 

  75. Shor P. W., (1994), Algorithm for quantum computation: discrete logarithm and factoring, In: Proc. annual symp. on foundations of computer science, IEEE Press, Los Alamitos, CA, USA, 124–134

    Google Scholar 

  76. Beckman D., et al., (1996), Efficient networks for quantum factoring, Phys. Rev. A, 54: 1304

    Article  Google Scholar 

  77. Grover L. K., (1997), Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett., 79: 325–328

    Article  CAS  Google Scholar 

  78. Zanadi P. and M. Rasetti, (1997), Noiseless quantum codes, Phys., Rev. Lett., 79: 3306

    Article  Google Scholar 

  79. Shor P. W., (1996), Fault-tolerant quantum computation, In: Proc. the 37th Conf. foundation of computer science, Burlington, VT.

    Google Scholar 

  80. Benacluche J. G. and L. B. Kish, (2005), Future directions in electronic computation and information procession, In: Proc. IEEE, 93: 1858–1863

    Article  Google Scholar 

  81. Farhi E., et al., (2001), A quantum adiabatic evolution algorithm applied to random instances of a NP-complete problem, Science, 292: 472–476

    Article  CAS  Google Scholar 

  82. Amin M. H. S., et al., Thermally assisted adiabatic quantum computation, arXiv: cond-mat/0609332, 1: 13

    Google Scholar 

  83. Divincenzo D. P., et al., (2000), Universal quantum computation with exchange integration. Nature, 408: 339

    Article  CAS  Google Scholar 

  84. Jones J. A. and M. Mosca, (1998), Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer, J. Chem. Phys., 109: 1648

    Article  CAS  Google Scholar 

  85. Vandersypen L. M. K., et al., (2001), Experimental realization of Shor’s algorithm using nuclear magnetic resonance, Nature, 414: 883

    Article  CAS  Google Scholar 

  86. Ruda H. E. and B. B. Qiao, (2003), Modeling and prospects for solid state quantum computer, In Proc. IEEE, 91: 1874

    Article  Google Scholar 

  87. Berggren K. K., (2004), Quantum computing with superconductors, In: Proc. IEEE, 92: 1630

    Article  Google Scholar 

  88. Pashkin Y. A., et al., (2003), Quantum oscillations in two coupled charge qubits, Nature, 421: 823

    Article  CAS  Google Scholar 

  89. Chiorescu J., et al., (2003), Coherent quantum dynamics of superconducting flux qubit, Science, 299: 1869

    Article  CAS  Google Scholar 

  90. Orlando T. P., et al., (2003), Flux-based superconducting qubits for quantum computation, Physical C, 299: 1869

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, ZJ., Ren, TL. (2012). Information Electronics in the Nanotechnology Era. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_1

Download citation

Publish with us

Policies and ethics