Skip to main content

Introduction of Typical Modern Digital Sonar

  • Chapter
Digital Sonar Design in Underwater Acoustics

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC,volume 0))

Abstract

In the previous chapters, the basic principles of digital sonar design have been discussed. In applying these theoretical results and techniques to design specific sonar, there are many questions and problems we face. These include unified design of the wet end and the dry end, limitations of the platform for sonar installation and software / hardware testing, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robinson, A., Lermusiaux, P.: Prediction systems with data association for coupled ocean science and ocean acoustics. In: Proc. of ICTCA, Honolulu, www.deas.harad.edu (2003)

    Google Scholar 

  2. Haffa, R. P., Patton, J. H. Jr.: Analogues of stealth. Comparative Strategy, 10-3, pp. 257–271 (1991)

    Article  Google Scholar 

  3. Stephanic, T.: Strategic Anti-Submarine Warfare and Naval Strategy. Lexington, New York (1987)

    Google Scholar 

  4. Miasnikov, E.: Can a Russian strategic submarine survive at sea? The fundamental limits of passive acoustics. Science & Global Security, 4, pp. 213–251 (1994)

    Google Scholar 

  5. Lemon, S. G.: Towed array history, 1917–2003. IEEE J. of Oceanic Eng., 29-2, pp. 365–373 (2004)

    Article  Google Scholar 

  6. Zachow, H.: System for noise measurements of towed arrays. In: Proc. of UDT’1998, pp. 262–267 (1998)

    Google Scholar 

  7. Knight, A.: Flow noise calculations for extended hydrophones in fluid and solid-filled towed arrays. J. Acoust. Soc. Amer., 100-1, pp. 245 (1996)

    Article  ADS  Google Scholar 

  8. Francis, S. H., Slazak, M., Berryman, J. G.: Response of elastic cylinders to convective flow noise in homogeneous, layered cylinders. J. Acoust. Soc. Amer., 75-1, pp. 166 (1984)

    Article  ADS  Google Scholar 

  9. Lasky, M., Doolittle, R. D., Simmons, B. D., Lemon, S. G.: Recent progress in towed hydrophone array research. IEEE J. of Oceanic Eng., 29-2, pp. 374–387 (2004)

    Article  Google Scholar 

  10. Technical Report of Defense R&D Canada: Towed integrated active sonar, www.drac-rddc.ge.ca

    Google Scholar 

  11. Zeskind, R. M., Feuilet, J. P., Allensworth, W. S.: Acoustic performance of a multi-line system towed in several ocean environments. IEEE J. of Oceanic Eng., 23-1, pp. 124–128 (1998)

    Google Scholar 

  12. Feuillet, J. P.: Nonambiguous beamforming for a high resolution twin-array. JASA, 97-5, pp. 3292–3294 (1995)

    Google Scholar 

  13. Kaouri, K.: Left right ambiguity resolution of a towed array sonar, Somerville College. Univ. of Oxford, pp. 296–313, www.eprints.maths.ox.ac.uk

    Google Scholar 

  14. Pasalic, N.: Towed array handling system on Collins-class submarine. Sea Technology, 42-11, pp. 51–56 (2001)

    Google Scholar 

  15. Potter, J. R.: The “thin array”: a light weight ultra-thin (8mm OD) towed array for use from small vessels of opportunity, http://www.arl.nus.edu.sg. Accessed 1 Jan 2011

    Google Scholar 

  16. Allen, H., Cotterrill, P.: The manufacture and trials of an experimental vector sensor towed array to give good L/R ambiguity performance in a 65 mm diameter array. In: Proc. Of UDT’2006 Pacific, San Diego (2006)

    Google Scholar 

  17. Bucker, H.: Least-squares target detection for a twin-line towed array. JASA, 95-3, pp. 1669–1670 (1994)

    Google Scholar 

  18. SURTASS LFA: http://www.surtasslfa.com. Accessed 1 Jan 2011

    Google Scholar 

  19. Gray, D. A., Riley, J. L.: Towed array shape estimation using Kalman filters:Theoretical models. IEEE J. Oceanic Eng., 18-4, pp. 543–556 (1993)

    Article  Google Scholar 

  20. Paidoussis, M. P.: Dynamics of flexible slender cylinders in axial flow. J. Fluid Mech., 26, pp. 717–736 (1966)

    Article  MATH  ADS  Google Scholar 

  21. Owsley, N. L.: Shape estimation for a flexible underwater cable. IEEE EASCON, Washington (1981)

    Google Scholar 

  22. Varadarajan, V., Krolik, J.: Sensor array shape estimation using active sonar clutter. In: Proc 2nd IEEE Sensor Array and Multichannel Signal Processing Workshop, Rosslyn (2002)

    Google Scholar 

  23. Hover, F. S., Grosenbaugh, M. A., Triantafyllou, M. S.: Calculation of dynamic motion and tensions in towed underwater cables. IEEE J. Oceanic Eng., 19-3, pp. 425–437 (1994)

    Google Scholar 

  24. Smith, J. J., Leung, Y. H., Cantoni, A.: The Cramer-Rao lower bound for towed array shape estimation with a single source. IEEE Trans., SP-44-4, pp. 1033–1035 (1996)

    Google Scholar 

  25. Karthikeyan, C.: Directional response of a towed array in shallow water sea. In Proc. IEEE, 133-F, pp. 138–145 (1986)

    Google Scholar 

  26. Denyki, B., Griffin, B.: Smaller winch technology. Sea Technology, pp. 34–40 (1997)

    Google Scholar 

  27. Preston, J. M.: Stability of towfish used as sonar platforms. In: Proc. of IEEE Ocean’92, pp. 888–893 (1992)

    Google Scholar 

  28. Rickman, B.: Towed array hydrodynamics and dynamic beamforming. In: Proc. UDT’90, pp. 237–242 (1990)

    Google Scholar 

  29. Milinazzo, F., Wilkie, M., Latchman, S. A.: An efficient algorithm for simulation the dynamics of towed cable system. J. of Oceanic Eng., 14-6, pp. 513–526 (1987)

    Article  Google Scholar 

  30. Ablow, C. M., Schechter, S.: Numerical simulation of undersea cable dynamics. J. of Oceanic Eng., 10-6, pp. 443–457 (1983)

    Article  Google Scholar 

  31. Lake, W.: Mechanics of Flow Induced Sound and Vibration. Academic Press, Boston (1986)

    Google Scholar 

  32. Gordon, D. R.: Winch Technology, 39-7, pp. 17–24 (1998)

    Google Scholar 

  33. Nikitakos, N. V., Leros, A. K., Katsikas, S. K.: Towed array shape estimation using multimodel partitioning filters. IEEE J. of Oceanic Eng., 23-4, pp. 380–384 (1998)

    Article  Google Scholar 

  34. Gloza, I.: Tracking the underwater noise source using vector sound: intensity probe. In: Proc. of ECUA’2002, pp. 247–250 (2002)

    Google Scholar 

  35. Marra, W.: Applying technology solution to challenges of coastal security. Sea Technology, 46-3, pp. 16–23 (2005)

    Google Scholar 

  36. Pinto, M. A., Bellettini, A., Hollett, R., Tesei, A.: Real and synthetic array signal processing of buried targets. IEEE J. of Oceanic Eng., 27-3, pp. 484–494 (2002)

    Article  Google Scholar 

  37. National Research Council: Illuminating the Hidden Planet: the Future of Sea Floor Observatory Science. National Academy Press, Washington (2000)

    Google Scholar 

  38. Austin, T., Edson, J., McGillis, W., Chris, A., Purcell, M., Petitt, R., McElroy, M., Ware, J., Stokey, R.: The Martha’s Vineyard coast observatory: a long term facility for monitoring air-sea processes. In: Proc. Oceans 2000, Providence, pp. 1937–1941 (2000)

    Google Scholar 

  39. Detrick, R., Frye, D., Collins, J., Gobat, J., Grosenbaugh, M., Petitt, R., Plueddeman, A., Heydt, K., Wooding, F. B.: DEOS Moored Buoy Observatory Design Study. WHOI, Technical Report (2000)

    Google Scholar 

  40. Butler, R., Lay, T., Creager, K., Earl, P., Fischer, K., Gaherty, J., Laske, G., Leith, B., Park, J., Ritzwoller, M., Tromp, J., Wen, L.: Hawaii-2 observatory pioneers opportunities for remote instrumentation in ocean studies, EOS, Trans. American Geophysical Union, 81-15, pp. 162–163 (2000)

    Google Scholar 

  41. Ballard, R. D., Yoerger, D. R., Stewart, W. K., Bowen, A.: ARGO/JASON: a remotely operated survey and sampling system for full-ocean depth. In: Proc. Oceans 91, 1, pp. 71–75 (1991)

    Article  Google Scholar 

  42. Lemon, S. G.: Towed array history, 1917–2003. IEEE J. of Oceanic Eng., 29-2, pp. 365–373 (2004)

    Article  Google Scholar 

  43. Sonnichsen, F.: Communication options for underwater scientific networks. Sea Technology, 46-5, pp. 46–50 (2005)

    Google Scholar 

  44. El-Sharkaw, M. A., Upadhye, A., Lu, S., Kirakham, H., Howe, B. M., McGinnis, T., Lancaster, P.: North east Pacific time integrated undersea networked experiments (NEPTUNE): cable switching and protection. IEEE J. of Oceanic Eng., 30-3, pp. 232–240 (2005)

    Article  Google Scholar 

  45. Whitman, E. C.: Submarine in network centric warfare. Sea Power Archives, www.navyleague.org (2004)

    Google Scholar 

  46. Sullivan, E. J.: Passive acoustic synthetic aperture processing. IEEE J. of Oceanic Eng. Society Newsletter, 38-1, pp. 21–24 (2003)

    Google Scholar 

  47. Chatham, R. et al.: The synthetic aperture sonar revolution. In: Proc. of AUSI Workshop, Kona Hawaii (2000)

    Google Scholar 

  48. Kessel, R. T., Hollett, R. D.: Underwater intruder detection sonar for harbour protection: state of the art review and implications. In: Proc. of 2nd IEEE Conference on Homeland Security and Safety, Istanbul (2006)

    Google Scholar 

  49. Tanaka, T., Yamaguchi, I.: Low frequency synthetic aperture sonar. NEC Res.&Develop, 44-2, pp. 161–164 (2003)

    Google Scholar 

  50. Whitman, E. C.: Submarine in Network Centric Warfare, http://www.navyleague.org (2004)

    Google Scholar 

  51. Cebrowski, K., Garstka, J. J.: Network centric warfare: its origin and future. In: Naval Institute Proceedings (1998)

    Google Scholar 

  52. Stefanick, T.: Strategic Antisubmarine Warfare and Naval Strategy. Lexington, New York (1987)

    Google Scholar 

  53. SOSUS: http://www.fas.org/irp/program/collect/sosus.htm. Accessed 1 Jan 2011

    Google Scholar 

  54. Dunn, P.: Navy unmanned undersea vehicle (UUV) master plan. In: Unmanned underwater Vehicle Showcase 2000 Conference Proceedings, pp. 105–126 (2004)

    Google Scholar 

  55. NEPTUNE: www.neptunecanada.ca

    Google Scholar 

  56. VENUS: www.venus.uvic.ca

    Google Scholar 

  57. Fernandes, P. G., Brierley, A. S.: Using an autonomous underwater vehicle as a platform for mesoscale acoustic sampling in the marine environment. ICES CM, M:01-16 (1999)

    Google Scholar 

  58. Curtin, T., Bellingham, J. G., Catipovic, J., Webb, D.: Autonomous ocean sampling networks. Oceanography, 6-3, pp. 86–94 (1993)

    Google Scholar 

  59. Leonard, N. E., Fiorelli, E., Bhatta, P., Leonard, N. E., Shulman, I.: Adaptive sampling using feedback control of an autonomous underwater glider fleet. In: 13th International Symposium on Unmanned Untethered Submersible Technology, Durham (2003)

    Google Scholar 

  60. Eriksen C. C., Osse, T. J., Light, R. D., Wen, T., Lehman, T. W., Sabin, P. L., Ballard, J. W., Chiodi, A. M.: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26(4):424–436, October 2001.

    Google Scholar 

  61. Graver, J. G., Bachmayer R., Leonard, N. E., Fratantoni, D. M.: Underwater glider model parameter identification, In 13th International Symposium on Unmanned Untethered Submersible Technology. Durham, NH, USA, August 2003.

    Google Scholar 

  62. Graver, J. G. and Leonard, N. E.: Underwater glider dynamics and control” In 12th International Symposium on Unmanned Untethered Submersible Technology. Durham, NH, USA, August (2001)

    Google Scholar 

  63. Leonard, N. E. and Graver, J. G.: Model-based feedback control of autonomous underwater gliders. IEEE Journal of Oceanic Eng., 26-4, pp. 633–645 (2001)

    Article  Google Scholar 

  64. Shermanet, J., Davis, R. E., Owens, W. B., Valdes, J.: The autonomous underwater glider. IEEE J. of Oceanic Eng., 26-4, pp. 437–446 (2001)

    Article  Google Scholar 

  65. Ulanov, A. V.: Optimization criteria and hierarchy of mathematical models of an underwater gliding vehicle. In: Third International Shipbuilding Conference ISC’2002, St. Petersburg (2002)

    Google Scholar 

  66. Webb, D. C.: An underwater glider propelled by environmental energy. IEEE J. of Oceanic Eng., 26-4, pp. 447–452 (2001)

    Article  Google Scholar 

  67. Kong, J., Cui, J., Wu, D., Gerla, M.: Building underwater ad-hoc Networks and sensor networks for large scale real-time aquatic applications. In: Proceedings of MILCOM (2005)

    Google Scholar 

  68. Hétet, A., Guyonic, S.: Experiments into detection and classification of buried mines: towards concept achievement. In: Proc. UDT Europe 2004, Nice (2004)

    Google Scholar 

  69. Guyonic, S.: A technique for buried mines detection and classification-the application of a data acquisition tool and its subsequent process. Sea Technology, 44-6 (2003)

    Google Scholar 

  70. Stanic, S., Kirkendall, C. K., Tveten, A. B., Barock, T.: Passive Swimmer Detection. NRL Review, 2004.

    Google Scholar 

  71. Green, L. H., Raff, B. E.: Net-centric undersea warfare. Sea Technology, 40-11, pp. 19–26 (1999)

    Google Scholar 

  72. Burns, R. F.: The naval research laboratory. Sea Technology, 34-11, pp. 66–77 (1993)

    Google Scholar 

  73. Bealtie, G. A., Cotterill, P. A.: Assessing performance: Submarine flank arrays. Sea Technology, 36-11, pp. 45–49 (1995)

    Google Scholar 

  74. Feintach, P. L.: Adaptive beamforming to suppress hull noise using PVDF array panels. In: Proc. of UDT’94, London, pp. 235 (1994)

    Google Scholar 

  75. Stotts, S. A., Martin, J. L., Bedford, N. R.: Multiple source localization using GPS technology and received arrival time structure analysis in an air-deployed system. IEEE J. of Oceanic Eng., 22-3, pp. 576–582 (1997)

    Article  Google Scholar 

  76. Adams, A. E., Lawlor, M. A., Riyait, V. S., Hinton, O. R., Sharif, B. S.: Real time synthetic aperture sonar processing system. In: Proc. IEEE, 143-F, pp. 169–176 (1996)

    Google Scholar 

  77. Stergiopoulos, S., Urban, H.: A new passive synthetic aperture technique for towed arrays. IEEE J. of Oceanic Eng., 17-1, pp. 16–25 (1992)

    Article  Google Scholar 

  78. Bruce, M.: A processing requirement and resolution capability comparison of side scan and synthetic aperture sonars. IEEE J. of Oceanic Eng., 17-1, pp. 106–117 (1992)

    Article  Google Scholar 

  79. Stergiopoulos, S., Urban, H.: An experimental study in forming a long synthetic aperture at sea. IEEE J. of Oceanic Eng., 17-1, pp. 62–67 (1992)

    Article  Google Scholar 

  80. Hares, M. P., Gough, P. T.: Broad band synthetic aperture sonar. IEEE J. of Oceanic Eng., 17-1, pp. 80–94 (1992)

    Google Scholar 

  81. Stergiopoulos, S.: Implementation of adaptive and synthetic aperture processing schemes in integrated active and passive sonar system. In: Proc. IEEE, 86-2, pp. 358–398 (1998)

    Article  Google Scholar 

  82. Loggins, C. D., Christoff, J. T., Pipkin, E. L.: Results from rail synthetic aperture experiments. J. Acoust.Soc. Amer., 71, pp. 85–90 (1982)

    Article  ADS  Google Scholar 

  83. Garrood, D., Lehtomaki, N., Luk, T., Neudorfer, M., Palowitch, A.: Synthetic aperture sonar: an evolving technology. Sea Technology, 40-1, pp. 12–23 (1999)

    Google Scholar 

  84. Hazell, P. A.: What’s the future for ASW in NATO? Sea Technology, 39-11, pp. 10–17 (1998)

    Google Scholar 

  85. Moffat, J.: Complexity Theory and Network Centric Warfare. CCRP, Washington (2003)

    Google Scholar 

  86. Albert, D. S., Gartska, J. J., Stein, F. P.: Network Centric Warfare: Developing and Leveraging Information Superiority, 2nd Edn. CCRP, Washington (2002)

    Google Scholar 

  87. Pinto, M. A., Bellettini, A., Hollett, R., Tesei, A.: Real and synthetic array signal processing of buried targets. IEEE J. of Oceanic Eng., 27-3, pp. 484–494 (2002)

    Article  Google Scholar 

  88. Kennedy, F. D. Jr.: Experimentation: the key to transformation. Undersea Warfare, 5-1, pp. 3–10 (2002)

    Google Scholar 

  89. Walrod, J.: Sensor and actuator networks for acoustic signature monitoring and control. In: Proc. of UDT’1999, Nice (1999)

    Google Scholar 

  90. Walrod, J.: Sensor networks for network centric warfare. In: Proc. of NCW Conference, Fall Church (2000)

    Google Scholar 

  91. Applewhite, A., Kumagai, J.: Technology trends 2004. IEEE Spectrum, pp. 8–13 (2004)

    Google Scholar 

  92. Jonson, Adm Jay L.: Address at US naval institute Annapolis seminar and 123rd annual meeting. Annapolis (1997)

    Google Scholar 

  93. Bonito, G.: Sensor array projects and networks & other useful links. www.lnternet.edu (2003)

    Google Scholar 

  94. Kaouri, K.: Left right ambiguity resolution of a towed array sonar, Somerville College, Univ. of Oxford, pp. 296–313, www.eprints.maths.ox.ac.uk

    Google Scholar 

  95. ATM: http://www.atmforum.com. Accessed 1 Jan 2011

    Google Scholar 

  96. How Loud is the Navy’s SURTASS/LFA Sonar System ? http://www.earthislan.org. Accessed 1 Jan 2011

    Google Scholar 

  97. Pruitt, T.: Maritime homeland security for ports and commercial operation. Sea Technology, 45-11, pp. 20–26 (2004)

    Google Scholar 

  98. Sternlicht, D., Pesaturo, J. F.: Synthetic aperture sonar: frontiers in underwater imaging. Sea Technology, 45-11, pp. 27–34 (2004)

    Google Scholar 

  99. Spiess, F., Kupperman, W. A.: The marine physical laboratory in Scripps. Oceanography, 16-3, pp. 45–54 (2003)

    Google Scholar 

  100. Kuperman, W. A., Hodgkiss, W. S., Song, H. C., Akal, T., Ferla, C.: Phase conjugation in the ocean: experimental demonstration of a time reversal mirror. JASA, 105, pp. 1597–1606 (1999)

    Google Scholar 

  101. Sullivan, E. J.: Passive acoustic synthetic aperture processing. IEEE J. of Oceanic Eng. Society Newsletter, 38-1, pp. 21–24 (2003)

    Google Scholar 

  102. Medwin, H.: Sound in the Sea, Cambridge Univ. Press, New York (2005)

    Google Scholar 

  103. Cotterill, P. et al.: Processing considerations for vector sensor towed array: VESTA. In: Proc. of UDT’ 2006 Pacific, San Diego (2006)

    Google Scholar 

  104. Akyildiz, I., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc networks 3, pp. 257–279, 257–279, http://www.seciencedirect.com (2005)

    Article  Google Scholar 

  105. Chatham, R. et al.: The synthetic aperture sonar revolution. In: Proc. Of AUSI Workshop, Kona, Hawaii (2000)

    Google Scholar 

  106. Wocester, P. F., Spindel, R. C.: North Pacific Acoustic Laboratory, http://www.npal.ucsd.edu. Accessed 1 Jan 2011

    Google Scholar 

  107. Anyang, S. Y.: Fundamentals of Complex-System Theories: in Economics, Evolutionary Biology and Statistical Physics. Cambridge Univ. Press, New York (1998)

    Google Scholar 

  108. Cebrowski, K., Garstka, J. J.: Network Centric Warfare: its Origin and Future. Naval Institute Proceedings, JCS (1998)

    Google Scholar 

  109. Fioravanti, A. et al.: A parametric aperture sonar. In: Proc. of 3rd ECUA, Heraklion, pp. 1085–1090 (1996)

    Google Scholar 

  110. Camdy, J. V.: Model based signal processing in the ocean. IEEE Oceanic Eng. Society News Letter, 35-3, pp. 199–205 (2000)

    Google Scholar 

  111. Sullivam, E. J., Middleton, D.: Estimation and detection issues in matched field processing. IEEE J. of Oceanic Eng., 18-3, pp. 156–167 (1993)

    Article  Google Scholar 

  112. Baggerroer, A. B., Kuperman, W.: An overview of matched field method in ocean acoustics. IEEE J. of Oceanic Eng., 18, pp. 379–387 (1993)

    Article  Google Scholar 

  113. Munk, W., Worcester, P., Wunsch, C.: Ocean Acoustic Tomography. Cambridge Univ. Press, New York (1995)

    Book  Google Scholar 

  114. Cox, H., Zeskind, R., Owen, M.: Robust adaptive beamforming. IEEE Trans., ASSP-35, pp. 1365–1376 (1987)

    Google Scholar 

  115. Hampel, F., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A.: Robust Statistics: the Approach Based on Influence Function. Wiley, New York (1986)

    MATH  Google Scholar 

  116. Green, T. J. Jr.: Robust Passive Sonar, DARPA Tech 2000, Dallas, http://www.darpa.mil (2000)

    Google Scholar 

  117. Seong, W., Byun, S. H.: Robust matched field processing algorithm based on feature extraction. IEEE J. of Oceanic Eng., 27-3, pp. 642–652 (2002)

    Article  Google Scholar 

  118. Pandharipande, A.: Information, uncertainty and randomness. IEEE Potentials, Oct./Nov., pp.32–34 (2002)

    Google Scholar 

  119. Porter, M. B.: Acoustic models and sonar systems. IEEE J. of Oceanic Eng., 18, pp. 425–437 (1993)

    Article  Google Scholar 

  120. Candy, J. V.: Model-Based Digital Processing. Wiley, New York (2005)

    Book  Google Scholar 

  121. Tolstoy, I., Clay, C. S.: Ocean Acoustics. AIP Press, New York (1987)

    Google Scholar 

  122. Tolstoy, A.: Matched Field Processing for Ocean Acoustics. World Scientific Pub., New Jersey (1993)

    Google Scholar 

  123. Sullivan, E. J., Edelson, G. S.: Model-Based Broadband Towed Array Processing. 147th meeting of the Acoustical Society of America, New York, (2004)

    Google Scholar 

  124. Sullivan, E. J., Candy, J. V.: Space-time array processing: the model-based approach. J. Acoust. Soc. Amer., 102-1, pp. 2809–2820 (1997)

    Article  ADS  Google Scholar 

  125. Candy, J. V., Sullivan, E. J.: Passive localization in ocean acoustics: a model based approach. J. Acoust. Soc. Amer., 98-3, pp. 1455–1471 (1995)

    Article  ADS  Google Scholar 

  126. SOSUS: http://www.globalsecurity.org. Accessed 1 Jan 2011

    Google Scholar 

  127. Patria Aviation Oy, PFA:http://www.patria.fi. Accessed 1 Jan 2011

    Google Scholar 

  128. Thales Underwater Systems: http://www.tahlesgroupe.com/naval. Accessed 1 Jan 2011

    Google Scholar 

  129. Whitehouse, B. G., Hines, P., Ellis, D., Barron, C. N.: Rapid environmental assessment within NATO. Sea Technology, 45-11, pp. 10–14 (2004)

    Google Scholar 

  130. ACTAS: http://www.atlas-elektronik.com. Accessed 1 Jan 2011

    Google Scholar 

  131. Richman, B.: Towed array hydrodynamics and dynamic beamforming. In: Proc. of UDT’1990, London, pp. 243–248 (1990)

    Google Scholar 

  132. Doisy, Y.: Port-starboard discrimination performance on activated towed arrays systems. In: Proc. of UDT’1995, Cannes, pp. 125–129 (1995)

    Google Scholar 

  133. Letiche, M. et al.: TSM 2670 active low frequency sonar — the design of the transmitter system. In: Proc. of UDT’1995, Cannes, pp. 302–306 (1995)

    Google Scholar 

  134. Van den Dool, T. C., Hopmans, L. J. M.: Flank array adaptive noise canceling. In: Proc. of UDT’1998, London, pp. 298–302 (1998)

    Google Scholar 

  135. RAFAEL: http://www.rafael.co.il. Accessed 1 Jan 2011

    Google Scholar 

  136. FAS 3-1 Flank Array Sonar: http://www.stn-atlas.de. Accessed 1 Jan 2011

    Google Scholar 

  137. Godin, O. A., Palmer, D. R.: History of Russian Underwater Acoustics. World Scientific Pub., New Jersey (2008)

    Book  Google Scholar 

  138. Gerken, L.: ASW Versus Submarine Technology Battle. American Scientific Corp., California (1986)

    Google Scholar 

  139. Bray, A. V.: Underwater hardware life testing. Sea Technology, 33-12, pp. 56–61 (1992)

    Google Scholar 

  140. Marra, L. J.: Sharkbite of the submarine lightwave cable system: history, causes and resolution. IEEE J. of Oceanic Eng., 14-3, pp. 230–237 (1989)

    Article  Google Scholar 

  141. Blanhut, R. E., Miller, W., Wilcox, C. H.: Radar and Sonar. Springer, New York (1991)

    Google Scholar 

  142. Kock, W. E.: Radar, Sonar and Holography. Academic Press, Boston (1973)

    Google Scholar 

  143. Sherwin, C. W., Ruina, J. P., Rawcliffe, R. D.: Some early developments in synthetic aperture radar systems. IRE Trans. Military Electronic, 6, pp. 111–115 (1962)

    Article  Google Scholar 

  144. Tomiyasu, K.: Tutorial review of synthetic aperture radar (SAR) with applications to imaging the ocean surface. In: Proc. IEEE, 66, pp. 563–583 (1978)

    Article  ADS  Google Scholar 

  145. Brown, W. M., Porcello, L. J.: An introduction to synthetic aperture radar. IEEE Spectrum, pp. 52–62 (1969)

    Google Scholar 

  146. Harger, R. O.: Synthetic Aperture Radar Systems. Academic Press, Boston (1970)

    Google Scholar 

  147. Cutrona, L. J.: Synthetic aperture radar. In: Radar Handbook, M.I. Skolink (Eds.), McGraw-Hill, New York (1970)

    Google Scholar 

  148. Loggins, C. et al.: Results from real synthetic aperture experiments. J. Acoust.Soc. Amer., 71-Suppl., pp. 85–90 (1982)

    Article  ADS  Google Scholar 

  149. Zhang, C. H, Tang, J. S. et al.: Final report of SAS prototype. Technical Report, Institute of Acoustics (2001)

    Google Scholar 

  150. Li, Q. H. et al.: Advances of SAS study in China. In: Proc. of UAM’2005, Crete (2005)

    Google Scholar 

  151. SAS: http://www.apl.washington.edu. Accessed 1 Jan 2011

    Google Scholar 

  152. DDS: http://www.arstech.de; http://www.dsi.co.il, http://www.sonardyne.com; http://www/kongsberg-mesotech.com, http://www.QinetiQ.com. Accessed 1 Jan 2011

    Google Scholar 

  153. Jiang, L. J. et al.: Advances of diver detection sonar study. Science in Press, 54-3, pp.269–272 (2009)

    Google Scholar 

  154. Aeronet: http://www.gsfc.nasa.gov. Accessed 1 Jan 2011

    Google Scholar 

  155. BATS: http://www.bbsr.edu. Accessed 1 Jan 2011

    Google Scholar 

  156. Delaney, K. J.: Acoustic surveillance of sea minelaying. SPAWAR, San Diego

    Google Scholar 

  157. Feely, M. et al.: ARCI heralds acoustic revolution. UDT Forum, 1, pp. 10–15 (2005)

    Google Scholar 

  158. SURTASS: http://www.chinfo.navy.mil. Accessed 1 Jan 2011

    Google Scholar 

  159. Roca, R.: AT&T Bell Labs presentation on information technology trends to GovTechNet’99. Washington (1999)

    Google Scholar 

  160. WSS: http://www.wss2008.org. Accessed 1 Jan 2011

    Google Scholar 

  161. Franceschetti, G., Lanari, R.: Synthetic Aperture Radar Processing. CRC Press, Boca Raton (1999)

    Google Scholar 

  162. Robert, M. K., Beerens, S. P.: Adaptive beamforming algorithms for tow ship noise canceling. In: Proc. of UDT’ 2002 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Q. (2012). Introduction of Typical Modern Digital Sonar. In: Digital Sonar Design in Underwater Acoustics. Advanced Topics in Science and Technology in China, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18290-7_8

Download citation

Publish with us

Policies and ethics