Skip to main content

Implementation Methods of Various Functions of Digital Sonar

  • Chapter
Digital Sonar Design in Underwater Acoustics

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC,volume 0))

  • 3078 Accesses

Abstract

The combination of digital signal processing theory and techniques with underwater acoustics and oceanography establishes the foundation of digital sonar design [1]–[6], and also provides the possibility to complete the tactical and technical specifications. But this is just one problem. In order to implement various functions of a digital sonar system, it is necessary to carefully manage the hardware and software, choose the right DSP chips and the algorithms, which can perfectly run the necessary compiler. The philosophy of a sonar designer should be: based on the user’s requirements, find the optimum, but the simplest design. It is necessary to use the simplest, most reliable means to implement our design. The system that we designed must have a friendly interface, extendable space [7]–[13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, V. C.: The first twenty years of acoustical signal processing. J. Acoust. Soc. Amer., 51, pp. 1062–1080 (1972)

    Article  ADS  Google Scholar 

  2. Stergiopoulos, S. (Eds.): Advanced Digital Signal Processing Handbook. CRC Press, Boca Raton (2001)

    Google Scholar 

  3. Chen, C. T. (Eds.): The past, present and future of underwater acoustic signal processing. IEEE Signal Processing, 15-4, pp. 21–53 (1998)

    Google Scholar 

  4. Buck, B., Macaulay, V. A.: Maximum Entropy in Action. Oxford Science Pub. (1991)

    Google Scholar 

  5. Green, T. J. Jr.: Robust passive sonar. DARPA Tech 2000, Dallas (2000)

    Google Scholar 

  6. Tolstoy, A.: Matched Field Processing For Underwater Acoustics. World Scientific Pub. New Jersey (1993)

    MATH  Google Scholar 

  7. Dillard, R. A., Dillard, G. M.: Detectability of Spread Spectrum Signals. Artech House, Norwood (1989)

    Google Scholar 

  8. Davanport, R. L.: The influence of the ocean environment on sonar system design. EASCON Record 1975, pp. 200–207 (1975)

    Google Scholar 

  9. Apel, J. R., Badiey, M., Chiu, C. S., et al.: An overview of the 1995 SWARM shallow water internal wave acoustic scattering experiment. IEEE Oceanic Eng., 22-3, pp. 465–500 (1997)

    Article  Google Scholar 

  10. Proc. of IEEE Special issues on Real Time systems, Vol.82 (1994) No.1

    Google Scholar 

    Google Scholar 

  11. Brillinger, D. R.: Some basic aspects and uses of high order spectra. IEEE Trans., SP-36-3, pp. 239–250 (1994)

    Google Scholar 

  12. Swingler, D., Walker, R.: Line array beamforming using linear prediction for aperture interpolation and extrapolation. IEEE Trans., ASSP-37-1, pp. 16–30 (1989)

    Google Scholar 

  13. Li, Q. H., Zhang, C. H.: A new architecture of spatial filter for suppressing strong directional interference. In: Proc. Of IMDEX’99, Singapore, pp. 87–96 (1999)

    Google Scholar 

  14. Trider, R. C.: A fast Fourier transform (FFT) based on sonar signal processor. IEEE Trans., ASSP-26, pp. 15–20 (1978)

    Google Scholar 

  15. Jarvis, S., Morrissey, R.: High rate underwater acoustic telemetry with naval applications. Sea Technology, 40-5, pp. 67–70 (1999)

    Google Scholar 

  16. Li, Q. H., Yin, L.: A new algorithm of background equalization in digital sonar. J. of Chinese Acoustics, 18-3, pp. 211–216 (1999)

    Google Scholar 

  17. Rickard, J. T., Zeidler, J. R.: Second order output statistics of adaptive line enhancer. IEEE Trans., ASSP-27, pp. 31–39 (1979)

    Google Scholar 

  18. Hahn, W. R.: Optimum signal processing for passive sonar range and bearing estimation. J.Acoust.Soc. Amer., 58, pp. 201–207 (1975)

    Article  ADS  Google Scholar 

  19. Carter, G. C.: Time delay estimation for passive sonar signal processing. IEEE Trans., ASSP-29, pp. 463–470 (1981)

    Google Scholar 

  20. Piersol, A. G..: Time delay estimation using phase data. IEEE Trans., ASSP-29, pp. 471–477 (1981)

    Google Scholar 

  21. Robertson, G. H.: A fast amplitude approximation for quadrature pairs. Bell Syst. Tech. J., 50, pp. 2849–2852 (1971)

    MATH  Google Scholar 

  22. Wax, M., Kailath, T.: Decentralized processing in sensor arrays. IEEE Trans., 73, pp. 1123–1129 (1985)

    Google Scholar 

  23. Barton, P.: Digital beam forming for radar. IEEE Proc., 127-F-4, pp. 266–277 (1980)

    Google Scholar 

  24. Li, Q. H.: A precise time delay estimation for split beam array system. In: Proc. ICASSP’86, Tokyo, pp. 1816–1819 (1986)

    Google Scholar 

  25. Ianniello, J. P.: Large and small error performance limits for multi path time delay estimation. IEEE Trans., ASSP-34, pp. 245–251 (1986)

    Google Scholar 

  26. Quaiz, A. H.: An overview of the time delay estimation in active and passive system for target localization. IEEE Trans., ASSP-29, pp. 527–533 (1981)

    Google Scholar 

  27. Johnson, D. H.: Improving the resolution of bearing in passive sonar arrays by eigenvalue analysis. IEEE Trans., ASSP-30-4, pp. 638–647 (1982)

    Google Scholar 

  28. Cadzow, J. A.: Multiple source location — the signal subspace approach. IEEE Trans., ASSP-38, pp. 1110–1125 (1990)

    Google Scholar 

  29. Satish, A., Kaskyap, R. L.: Multiple target tracking using maximum likelihood principle. IEEE Trans., SP-42, pp. 1577–1695 (1995)

    Google Scholar 

  30. Cox, H.: Sensitivity consideration in adaptive beamforming. In: Signal processing, Griffith, J. W. R. (Eds.), Academic Press, Boston (1973)

    Google Scholar 

  31. Li, Q. H.: An application of DSP technique in underwater target automatic tracking. In: Proc. of ICSPAT’93, pp. 1574–1577 (1993)

    Google Scholar 

  32. Jabrikian, J., Messer, H.: Three dimensional source localization in a waveguide. IEEE Trans., SP-44-1, pp. 1–13 (1996)

    Google Scholar 

  33. Janffret, G. G., Musso, C. J.: New results in target motion analysis. In: Proc. UDT’91, Paris, pp. 239–244 (1991)

    Google Scholar 

  34. Li, Q. H.: Signal separation theory using adaptive array. J. of Intl. Adaptive Control and Signal Processing, 2, pp. 121–130 (1988)

    Article  ADS  Google Scholar 

  35. Doisy, Y.: General motion estimation from correlation sonar. IEEE J. of Oceanic Engr., 23-5, pp. 127–140 (1998)

    Article  Google Scholar 

  36. Smidt, R. O.: Multiple emitter location and signal parameter estimation. In: Proc. of RSDC, Spectral Estimation Workshop, pp. 243–256 (1979)

    Google Scholar 

  37. Roy, R., Kailath, T.: ESPRIT — estimation of signal parameters via rotational invariance techniques. IEEE Trans., ASSP-37, pp. 984–995 (1989)

    Google Scholar 

  38. Viberg, M., Ottersten, B., Kailath, T.: Performance analysis of the total least square ESPRIT algorithm. IEEE Trans., SP-39, pp. 1122–1135 (1991)

    Google Scholar 

  39. Li, Q. H.: A trace extract technique for fast moving target in underwater acoustics. In: Proc. of UDT’99, pp. 177–180 (1999)

    Google Scholar 

  40. Diracca, C., Crandruilemin, B.: Torpedo warning receivers. In: Proc. of UDT’94, London, pp. 44–46 (1994)

    Google Scholar 

  41. Li, Q. H., Li, S. Q.: Range directivity — a new concept in passive source bearing. In: Proc. of UDT’92, pp. 7–12 (1992)

    Google Scholar 

  42. Kummert, A.: Fuzzy technology implemented in sonar systems. IEEE J. of Oceanic Engr., 18-4, pp. 439–446 (1993)

    Google Scholar 

  43. Campbell, J. P. Jr.: Speaker recognition: a tutorial. In: Proc. of IEEE, 85-9, pp. 1437–1462 (1997)

    Article  Google Scholar 

  44. Trearen, P., Pacheco, M., Vellasco, M.: VLSI architectures for neural networks. In: IEEE Micro., pp. 8–27 (1989)

    Google Scholar 

  45. Widrow, B., Lehr, M. A.: 30 years of adaptive neural networks: perception, adaline and backpropagation. In: Proc. of IEEE, 78, pp.1415–1441 (1990)

    Article  Google Scholar 

  46. Miller, W. et al.: Office of naval research contribution to neural networks and signal processing in ocean engineering. IEEE J. of Oceanic Engr., 17-4, pp. 299–307 (1992)

    Article  Google Scholar 

  47. Yu, P. T., Coyle, E. J.: The classification and associative memory of stack filters. IEEE Trans., SP-40, pp.2483–2497 (1992)

    Google Scholar 

  48. Grenie, M.: Acoustic detection of propeller cavitation. In: Proc. ICASSP’90, pp. 2907–2910 (1990)

    Google Scholar 

  49. Deller, J. R.: Set membership identification in digital signal processing. IEEE ASSP Magazine, 6-1, pp. 4–20 (1990)

    Google Scholar 

  50. Fox, M. S.: AI and expert system myths, legends and facts. IEEE Expert, 5-1, pp. 8–22 (1990)

    Article  Google Scholar 

  51. Parsay, K., Chignell, M.: Expert systems for experts. John Wiley, New York (1988)

    Google Scholar 

  52. Li, Q. H.: The nearest neighborhood criteria in underwater target recognition. In: Proc. of UDT’96 (1996)

    Google Scholar 

  53. Tarlton, M.: The use of an expert system toolkit of sonar system design. Naval Forces, X–XII, pp. 62–66 (1994)

    Google Scholar 

  54. Lourens, J. G.: Passive sonar ML estimator for ship propeller speed. IEEE J. of Oceanic Engr., 23-4, pp. 448–453 (1998)

    Article  Google Scholar 

  55. Maksym, J. N.: Expert systems for ship noise interpretation. In: Adaptive methods in underwater acoustics, Urban, H. G. (Eds.), pp. 653–670 (1985)

    Google Scholar 

  56. Lucas, P., Van der Gaag, L.: Principles of expert systems. Addison-Wesley, New Jersey (1991)

    MATH  Google Scholar 

  57. Boashash, B., O’Shea, P.: A methodology for detection and classification of some underwater acoustic signals using time-frequency analysis techniques. IEEE Trans. on Acoustics, Speech, and Signal Processing, 38-11, pp. 1829–1841 (1990)

    Article  Google Scholar 

  58. Bregman, A. S.: Auditory scene analysis: the perceptual organization of sound. The MIT Press, London (1990)

    Google Scholar 

  59. Brown, G. J., Wrigley, S. N.: Feasibility study into the application of computational auditory scene analysis techniques to sonar signals, Technical report, University of Sheffield, Department of Computer Science (2000)

    Google Scholar 

  60. Song, H. C., Kuperman, W. A., Hodgkiss, W. S.: Recent results from ocean acoustic time reversal experiments. In: Proc. of ECUA’2002, Gdansk, pp. 279–284 (2002)

    Google Scholar 

  61. Kuperman, W. A., Hodgkiss, W. S., Song, H. C. et al.: Phase conjugation in the ocean: experimental demonstration of a time reversal mirror. JASA, 105, pp. 1597–1606(1999)

    Google Scholar 

  62. Seong, W., Byun, S. H.: Robust matched field processing algorithm based on feature extraction. IEEE J. of Oceanic Engr., 27-3, pp. 642–652 (2002)

    Article  Google Scholar 

  63. Gershman, A. B., Sidiropoulos, N. D. (Eds.): Space-time processing for MIMO communications. Wiley, New York (2005)

    Google Scholar 

  64. Chandran, S. (Eds.): Advances in Direction of Arrival Estimation. Artech House, Boston (2005)

    Google Scholar 

  65. Kuperman, W. A., D’Spain, G. L. (Eds.): Ocean Acoustic Interference Phenomena and Signal Processing. AIP Press, New York (2001)

    Google Scholar 

  66. Jackson, D. R., Dowling, D. R.: Phase conjugation in underwater acoustics. JASA, 91, pp. 3257–3277 (1991)

    Google Scholar 

  67. Stojanovic, M.: Recent advances in high-speed underwater acoustic communications. IEEE J. Oceanic Eng., 21, pp. 125–136 (1996)

    Article  MathSciNet  Google Scholar 

  68. Yang, T. C., Siderius, M.: Temporal coherence and fluctuation of acoustic signals in shallow water. In: Proc. of the Fifth European Conference on Underwater Acoustics, Lyon, pp. 63–68 (2000)

    Google Scholar 

  69. Kim, S., Edelmann, G. F., Kuperman, W. A. et al.: Spatial resolution of time reversal array in shallow water. J. Acoust. Soc. Amer., 110, pp. 820–829 (2001)

    Article  ADS  Google Scholar 

  70. Hawkes, M., Nehorai, A.: Acoustic vector sensor correlations in ambient noise. IEEE J. of Oceanic Engr., 26-3, pp. 337–347 (2001)

    Article  Google Scholar 

  71. Nehorai, A., Paldi, E.: Acoustic vector-sensor array processing. IEEE Trans. Signal Processing, 42, pp. 2481–2491 (1994)

    Article  ADS  Google Scholar 

  72. Tolstoy, A.: Matched Field Processing for Underwater Acoustics. World Scientific Pub. New Jersey (1993)

    MATH  Google Scholar 

  73. Lee, N., Tracey, B.: Matched field processing — How much does it really benefit?. In: UASP’2001, West Greenwich (2001)

    Google Scholar 

  74. Kilfoyle, D., Baggeroer, A. B.: The state of the art in underwater acoustic telemetry. IEEE J. Oceanic Eng., 25-4, pp. 4–27 (2000)

    Article  Google Scholar 

  75. Proakis, J. G., Sozer, E. M., Rice, J. A., Stojanovic, M.: Shallow water acoustic networks. IEEE Communications Magazine, 39-11, pp. 114–119 (2001)

    Article  Google Scholar 

  76. Freitag, L., Stojanovic, M., Grund, M., Singh, S.: Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication. IEEE J. of Oceanic Engr., 26-4, pp. 586–593 (2001)

    Article  Google Scholar 

  77. Robinson, A., Lermusiaux, P.: Prediction systems with data association for coupled ocean science and ocean acoustics. In: Proc. of ICTCA, Honolulu (2003)

    Google Scholar 

  78. Quazi, A., Konrad, W.: Underwater acoustic communications. IEEE Com. Magazine, pp. 24–29 (1982)

    Google Scholar 

  79. Jobst, W.: Measurement of the temporal, spatial and frequency stability of an underwater acoustic channel. J. Acoust. Soc. Amer., 63, pp. 62–69 (1979)

    Article  ADS  Google Scholar 

  80. Baggeroer, A. B.: Acoustic telemetry — an overview. IEEE J. Oceanic Engr., 9, pp. 229–235 (1984)

    Article  Google Scholar 

  81. Stojanovic, M.: Recent advances in high rate underwater acoustic communications. IEEE J. Oceanic Engr., 21, pp. 125–136 (1996)

    Article  MathSciNet  Google Scholar 

  82. Whitman, E. C.: Submarine in Network Centric Warfare. In: Sea Power Archives, www.navyleague.org (2004)

    Google Scholar 

  83. Pruitt, T.: Maritime homeland security for ports and commercial operation. Sea Technology, 45-11, pp. 20–26 (2004)

    Google Scholar 

  84. Akyildiz, I. F., Dario, I. A., Pompili, D. Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc networks, 3, pp. 257–279, http://www.seciencedirect.com (2005)

    Article  Google Scholar 

  85. Fink, M., Kuperman, W. A., Montagner, J. P., Tourin, A.: (Eds): Imaging of Complex Media with Acoustic and Seismic Waves. Springer, New York (2002)

    Google Scholar 

  86. Stojanovic, M. et al.: Adaptive multi-channel combining and equalization for underwater acoustic communications. J. Acoust. Soc. Amer., 94, pp. 1621–1631 (1993)

    Article  ADS  Google Scholar 

  87. Stojanovic, M., Catipovic, J. A., Proakis, J. G.: Phase-coherent digital communications for underwater acoustic channels. IEEE J. Oceanic Eng., 19-1, pp. 100–111 (1994)

    Article  Google Scholar 

  88. Westervelt, P. J.: Parametric acoustic array. JASA, 35, pp. 535–537 (1963)

    Google Scholar 

  89. Rasmussen, R. A.: Studies related to the design and use of time / bearing sonar display. AD 690540 (1968)

    Google Scholar 

  90. Neri, D. F., Kobus, D. A., Luria, S. M. et al.: Effect of background and foreground color coding on detection: acoustic data analysis. AD-A 154105 (1985)

    Google Scholar 

  91. Butler, W. B., McKemie, W. M.: Engineering guidelines for the use of color on the sonar display. AD 782597 (1974)

    Google Scholar 

  92. Deuser, M., Middleton, D.: On the classification of underwater acoustic signal: I and II. J. Acoust. Soc. Amer., 58 (1975)

    Google Scholar 

  93. Roddy, A. R., Stosz, J. D.: Fingerprint features — statistical analysis and system performance estimates. In: Proc. of IEEE, 85-9, pp. 1437–1462 (1997)

    Google Scholar 

  94. Hartgan, J. A.: Clustering Algorithms. Wiley, New York (1975)

    Google Scholar 

  95. Anderberg, R. A.: Cluster Analysis for Applications. Academic Press, Boston (1973)

    MATH  Google Scholar 

  96. Turban, E., Watkins, P. R. (Eds.): Applied Expert Systems. North Holland, Amsterdam (1988)

    MATH  Google Scholar 

  97. Sari, H., Woodward, B.: Digital acoustic voice communications. Sea Technology, 39-5, pp. 31–36 (1998)

    Google Scholar 

  98. Curtin, T. R.: ONR program in underwater acoustic communications. Sea Technology, 40-5, pp. 17–27 (1999)

    ADS  Google Scholar 

  99. Forbes, A.: Acoustic monitoring of global ocean climate. Sea Technology, 35-9, pp. 65–69 (1994)`

    Google Scholar 

  100. Bucaro, J. A.: Optical hydrophones for sonar. EASCON’78 Record, pp. 298–302 (1978)

    Google Scholar 

  101. Olmo, G., Magli, E., Presti, L. L.: Joint statistical signal detection and estimation Part I: theoretical aspects of the problem. Signal Processing, 80, pp. 57–73 (2000)

    Article  MATH  Google Scholar 

  102. Song, H. C., Kuperman, W. A., Hodgkiss, W. S.: A time reversal mirror with variable range focusing. J. Acoust. Soc. Amer., 103, pp. 3234–3240 (1998)

    Article  ADS  Google Scholar 

  103. Kim, S., Edelmann, G. F., Kuperman, W. A., Hodgkiss, W. S., Song, H. C., Akal, T.: Spatial resolution of time reversal array in shallow water. J. Acoust. Soc. Amer., 110, pp. 820–829 (2001)

    Article  ADS  Google Scholar 

  104. Clark, A., Sekino, H.: A multidisplinary deep sea long term observatory in Japan. In: Proc. Oceans 2001 Conference, Honolulu, pp. 1290–1295 (2001)

    Google Scholar 

  105. Detrick, R., Frye, D. Collins, J., Gobat, J.: DEOS Moored Buoy Observatory Design Study. WHOI, Technical Report (2000)

    Google Scholar 

  106. Butler, R., Chave, A. D., Duennebier, F. K., et al.: Hawaii-2 observatory pioneers opportunities for remote instrumentation in ocean studies, EOS. Trans. American Geophysical Union, 81-15, pp. 162–163 (2000)

    ADS  Google Scholar 

  107. Ballard, R. D., Yoerger, D. R., Stewart, W. K., et al.: ARGO / JASON: a remotely operated survey and sampling system for full-ocean depth. In: Proc. Oceans 91,1, pp. 71–75 (1991)

    Article  Google Scholar 

  108. Proakis, J. G.: Digital Communications, 3rd Edn. McGraw-Hill, New York (1997)

    Google Scholar 

  109. Freitag, L., Stojanovic, M., Grund, M., et al.: Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication. IEEE J. of Oceanic Eng., 26-4, pp. 586–593 (2001)

    Article  Google Scholar 

  110. Robinson, A., Lermusiaux, P.: Prediction systems with data association for coupled ocean science and ocean acoustics. In: Proc. Of ICTCA, Honolulu, www.deas.harard.edu (2003)

    Google Scholar 

  111. Wei, R. C., Chen, C. F., Newhall, A. E., et al: Lin, Po-Chang A preliminary examination of the low-frequency ambient noise field in the south china sea during the 2001 ASIAEX experiment. IEEE Journal of Oceanic Eng., pp. 1308–1315 (2001)

    Google Scholar 

  112. Quazi, A., Konrad, W.: Underwater acoustic communications. IEEE Com. Magazine, pp. 24–29 (1982)

    Google Scholar 

  113. Fischer, J. H., Bennet, K. H.: High data rate, underwater acoustic data communication. Sea Technology, 34-5, pp. 10–13 (1993)

    Google Scholar 

  114. Gershman, A. B., Sidiropoulos, N. D. (Eds.): Space-Time Processing for MIMO Communications. Wiley, New York (2005)

    Google Scholar 

  115. Rion, O., Vetterli, M.: Wavelets and signal processing. IEEE SP Magazine, pp. 14–38 (1991)

    Google Scholar 

  116. Shensa, M. J.: The discrete wavelet transform: Wedding the Trous and Mallat algorithm. IEEE Trans., SP-40, pp. 2462–2482 (1992)

    Google Scholar 

  117. Fanily, F.: Fractals. DSP Applications, 2-12, pp. 50–58 (1993)

    Google Scholar 

  118. Ramnsley, M. F.: Fractals Everywhere. Wiley, New York (1990)

    Google Scholar 

  119. Knapp, C. H., Carter, G. C.: The generalized correlation method for estimation of time delay. IEEE Trans., ASSP-24, pp. 320–327 (1976)

    Google Scholar 

  120. Messer, H.: The use of spectral information in optimal detection of a source in the presence of a directional interference. IEEE J. of Oceanic Eng., 19-3, pp. 416–421 (1994)

    Google Scholar 

  121. Li, Q. H., Schwartz, S. C.: A Kind of Pre-processing of Robust Wiener filter. Department of EE, Princeton University (1985)

    Google Scholar 

  122. Li, Q. H., Schwartz, S. C.: A Combined Architecture of Adaptive Noise Canceller and Line Enhancer. Department of EE, Princeton University (1985)

    Google Scholar 

  123. Volder, T. E.: The CORDIC Trigonometric Computing Technique. IRE Trans., EC-8 (1959)

    Google Scholar 

  124. Li, Q. H.: An Introduction to Sonar Signal Processing. Ocean Pub., Beijing (1985)

    Google Scholar 

  125. Heimdal, P., Bryn, F.: Passive ranging techniques. In: Proc. of NATO ASI on Signal Processing, New York (1972)

    Google Scholar 

  126. Sutton, R.: Optimization of human / machine control systems. In: Proc. of UDT’1990, London, pp. 243–248 (1990)

    Google Scholar 

  127. Comon, P. et al.: Sonar interception from a single beam or sensor. In: Proc. of UDT’1996, London, pp. 258–261 (1996)

    Google Scholar 

  128. Edwards, J. R., Schmidt, H., LePage, K. D.: Bistatic synthetic aperture target detection and imaging with an AUV. IEEE J. of Oceanic Eng., 26-4, pp. 690–699 (2001)

    Article  Google Scholar 

  129. Coraluppi, S.: Multistaic sonar localization. IEEE J. of Oceanic Eng., 31-4, pp. 964–974 (2006)

    Article  Google Scholar 

  130. De Pasquale, S., Albano, F.: Passive and active multistatic / multisonar data processing with / without predefined coherent and / or impulsive single / multi source. In: Proc. of UDT’2009, Cannes (2009)

    Google Scholar 

  131. Varshney, P. K.: Distributed Detection and Data Fusion. Springer, New York (1996)

    Google Scholar 

  132. Hall, D. L., Llinas, J.: An introduction to multisensor data fusion. In: Proc. of IEEE, 85-1, pp. 6–23 (1997)

    Article  Google Scholar 

  133. Viswannathan, R., Varshney, P. K.: Distributed detection with multiple sensors: Part I — fundamentals. In: Proc. of IEEE, 85-1, pp. 54–63 (1997)

    Article  Google Scholar 

  134. Tenny, P. R., Sandel, N. R.: Detection with distributed sensors. IEEE Trans., AES-17-4, pp. 501–510 (1981)

    Google Scholar 

  135. Li, Q. H.: The optimum linear data fusion of independent observation data. Chin. J. Acoust, 20-1, pp. 18–24 (2001)

    Google Scholar 

  136. Li, Q. H.: The optimum linear data fusion of dependent observation data. Chinese J. of Acoustics, 20-2, pp. 97–102 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Q. (2012). Implementation Methods of Various Functions of Digital Sonar. In: Digital Sonar Design in Underwater Acoustics. Advanced Topics in Science and Technology in China, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18290-7_6

Download citation

Publish with us

Policies and ethics