Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC,volume 0))

  • 2956 Accesses

Abstract

The design of digital sonar is related to a wide knowledge of many subjects in science and technology. These include aspects of oceanography, platform noise, sensor technology, acoustic materials, the optimum extraction of weak signals, signal processing, the architecture of computer systems, human / machine engineering and artificial intelligence, etc. Therefore the sonar designer has to be familiar with these subjects and use them as pre-requisites in the design of good digital sonar [1]–[12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiener, N.: Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications. Wiley, New York (1949)

    MATH  Google Scholar 

  2. Knight, W. C., Pridham, R. G., Kay, S. M.: Digital signal processing for sonar. In: Proc. IEEE, 69, pp. 1451–1506 (1981)

    Article  Google Scholar 

  3. Urick, R. J.: Multipath propagation and its effects on sonar design and performance in the real ocean. In: Proc. of NATO ASI on Underwater Acoustics (1976)

    Google Scholar 

  4. Ol’shevskii, V. V.: Statistical Method in Sonar. Consultants Bureau, New York (1978)

    Google Scholar 

  5. Horton, C. W.: Signal Processing of Underwater Acoustic Waves. US Government Printing Office (1969)

    Google Scholar 

  6. Hamblen, W.: Next generation of stealth submarines. Sea Technology, 39-11, pp. 59–62 (1998)

    Google Scholar 

  7. Candy, J. V.: Signal Processing: the Model-Based Approach. McGraw-Hill, New York (1986)

    Google Scholar 

  8. Papoulis, A.: Maximum entropy and spectral estimation: a review. IEEE Trans., ASSP-29., pp. 1176–1186 (1981)

    MathSciNet  Google Scholar 

  9. Kassam, S. A., Poor, H. V.: Robust techniques for signal processing: a survey. In: Proc. IEEE, 73, pp. 433–481 (1985)

    Article  ADS  MATH  Google Scholar 

  10. Johnson, D., Dungeon, D.: Array Signal Processing: Concepts and Techniques. Prentice Hall, New Jersey (1993)

    MATH  Google Scholar 

  11. Hart, J. E.: A look at DSP chips. BYTE, pp. 250–255 (1989)

    Google Scholar 

  12. Gupta, A., Toong, H.: Microprocessors: the first twelve years. In: Proc. Of IEEE, 71-11, pp. 1236–1256 (1983)

    Article  Google Scholar 

  13. Anderson, V. C.: Side lobe interference suppression with an adaptive null processor. J. Acoust. Soc. Amer., 69, pp. 185–190 (1981)

    Article  ADS  Google Scholar 

  14. Anderson, V. C.: DICANNE, a realizable adaptive process. J. Acoust. Soc. Amer., 45, pp. 398–405 (1969)

    Article  ADS  Google Scholar 

  15. Widrow, B., Glover, J., McCool, J. M., et al.: Adaptive noise canceling: principles and applications. In: Proc. IEEE, 63, pp. 1692–1716 (1975)

    Article  Google Scholar 

  16. Li, Q. H., Li, S. Q.: The theoretical consideration of adaptive noise canceling filter in flank array sonar. In: Proc. of UDT’97, Hamburg (1997)

    Google Scholar 

  17. Gallagher, N. C. Jr.: Median filter: a tutorial. In: IEEE Proc. Of Intl. Symp. Circuits and Systems, pp. 1737–1744 (1988)

    Google Scholar 

  18. Struzinski, W. A., Lowe, E. D.: A performance comparison of four noise background normalization schemes proposed for signal detection. J. Acoust. Soc. Amer., 76-6, pp. 1738–1742 (1984)

    Article  ADS  Google Scholar 

  19. Lindley, C. A.: Practical Image Processing in C. Wiley, New York (1991)

    Google Scholar 

  20. Wickerhauser, M.: High Resolution Still Picture Compression. Digital Signal Proc., 2–4, pp. 204–226 (1992)

    Article  Google Scholar 

  21. Lim, J. S.: Two-Dimensional Signal and Image Processing. Prentice Hall, New Jersey (1990)

    Google Scholar 

  22. Struzinski, W. A., Lowe, E. D.: The effect of improper normalization on the performance of an automated energy detector. J. Acoust. Soc. Amer., 78-3, pp. 936–941 (1985)

    Article  ADS  Google Scholar 

  23. Pratt, W. K.: Digital Image Processing. Wiley, New York (1978)

    Google Scholar 

  24. Hinich, M. J.: Frequency wave-number array processing. J. Acoust. Soc. Amer., 69, pp. 732–737 (1981)

    Article  ADS  Google Scholar 

  25. Wang, H. S. C.: Amplitude shading of sonar transducer arrays. J. Acoust. Soc. Amer., 57, pp. 1076–1084 (1975)

    Article  ADS  Google Scholar 

  26. Kuo, S. M., Morgem, D. R.: Active Noise Control Systems. Wiley, New York (1996)

    Google Scholar 

  27. Vural, A. M.: Effects of perturbation on the performance of optimum / adaptive arrays. IEEE Trans., AES-15-1, pp. 76–87 (1979)

    Google Scholar 

  28. Farrier, D. R., Durrani, T. S., Nightingale, J. M.: Fast beamforming techniques for circular arrays. J. Acoust. Soc. Amer., 58, pp. 920–922 (1975)

    Article  ADS  Google Scholar 

  29. Gray, D. A.: Effect of time delay errors on the beam pattern of a linear array. IEEE J. of Oceanic Engr., 10, pp. 241–247 (1985)

    Article  ADS  Google Scholar 

  30. Pridham, P. G., Mucci, R. A.: A novel approach to digital beamforming. J. Acoust. Soc. Amer., 63, pp. 425–434 (1979)

    Article  ADS  Google Scholar 

  31. Fisher, B., Bershad, N. J.: ALE behavior for two sinusoidal signal models. IEEE Trans., ASSP-33, pp. 658–665 (1985)

    Google Scholar 

  32. Frost, O. L. III: An algorithm for linearly constrained adaptive array processing. In: Proc. IEEE, 60-8, pp. 926–935 (1972)

    Article  Google Scholar 

  33. Tuteur F. B., Presley, J. A. Jr.: Spectral estimation of space-time signals with DIMUS array. J. Acoust. Soc. Amer., 70, pp. 74–79 (1981)

    Article  ADS  Google Scholar 

  34. Hero, A. O., Schwartz, S.: A new generalized cross correlator. IEEE Trans., ASSP-33, pp. 38–45 (1985)

    Google Scholar 

  35. Messer, H.: The use of spectral information in optimal detection of a source in the presence of a directional interference. IEEE J. of Oceanic Engr., 19-3, pp. 416–421 (1994)

    Google Scholar 

  36. Pridham, R. G., Mucci, R. A.: Digital interpolation beamforming for low-pass and bandpass signals. In: Proc. IEEE, 67-6, pp. 904–919 (1979)

    Article  Google Scholar 

  37. Cantoni, A., Godara, L. C.: Performance of a postbeamformer interference canceller in the presence of broadband directional signals. J. Acoust. Soc. Amer., 76, pp. 128–138 (1984)

    Article  ADS  Google Scholar 

  38. Siewiorek, D. P., Swarz, R. S.: The Theory and Practice of Reliable System Design. Digital Press, Daytona Beach (1982)

    Google Scholar 

  39. Smith, D. J., Harris, J. I.: Line tracking using artificial neural networks and fuzzy inference. In: Proc. of UDT’91, pp. 148–152 (1991)

    Google Scholar 

  40. Bray, A. V.: Underwater hardware life testing. Sea Technology, 33-12, pp. 56–61 (1992)

    Google Scholar 

  41. Pecht, M. G., Nash, F. R.: Predicting the reliability of electronic equipment. In: Proc. of IEEE, 82-7, pp. 992–1004 (1994)

    Article  Google Scholar 

  42. Amstadter, B. L.: Reliability Mathematics. McGraw Hill, New York (1978)

    Google Scholar 

  43. Lapp, S. A.: Derivation of an exact expression for mean time to repair. IEEE Trans. On Reliability, R-35-3, pp. 336–337 (1986)

    Article  Google Scholar 

  44. Lyu, M. R. (Eds): Handbook of Software Reliability Engineering. McGraw Hill, New York (1996)

    Google Scholar 

  45. Marra, L. J.: Sharkbite of the submarine lightwave cable system: history, causes and resolution. IEEE J. of Oceanic Eng., 14-3, pp. 230–237 (1989)

    Article  Google Scholar 

  46. McCluskey, E. J.: Built-in self test technologies. IEEE Design and test of Computers, 2, pp. 21–28 (1985)

    Google Scholar 

  47. Ralston, A.: Encyclopedia of computer science engineering, 2nd Edn. Van Nostrand Reinhold, New York (1985)

    Google Scholar 

  48. Varshney, P. K.: Distributed Detection and Data Fusion. Springer, New York (1996)

    Google Scholar 

  49. Hall, D. L., Llinas, J.: An introduction to multisensor data fusion. In: Proc. IEEE, 85-1, pp. 6–23 (1997)

    Article  Google Scholar 

  50. Viswannathan, R., Varshney, P. K.: Distributed detection with multiple sensors: Part I — fundamentals. In: Proc. IEEE, 85-1, pp. 54–63 (1997)

    Article  Google Scholar 

  51. Tenny, P. R., Sandel, N. R.: Detection with distributed sensors. IEEE Trans. AES-17-4, pp. 501–510 (1981)

    Google Scholar 

  52. Li, Q. H.: The optimum linear data fusion of independent observation data. Chinese J. of Acoustics, 20-1, pp. 18–24 (2001)

    Google Scholar 

  53. Li, Q. H.: The optimum linear data fusion of dependent observation data. Chinese J. of Acoustics, 20-2, pp. 97–102 (2001)

    Google Scholar 

  54. Hamson, R. M.: The theoretical gain limitation of a passive vertical line array in shallow water. J. Acoust. Soc. Amer., 68-1, pp. 156–164 (1980)

    Article  ADS  Google Scholar 

  55. Yang, T. C.: A method of range and depth estimation by modal decomposition. J. Acoust. Soc. Amer., 82-5, pp. 1736–1745 (1987)

    Article  ADS  Google Scholar 

  56. Hawkes, M., Nehorai, A.: Acoustic vector sensor correlations in ambient noise. IEEE J. of Oceanic Eng., 26-3, pp. 337–347 (2001)

    Article  Google Scholar 

  57. Nehorai, A., Paldi, E.: Acoustic vector-sensor array processing. IEEE Trans. Signal Processing, 42, pp. 2481–2491 (1994)

    Article  ADS  Google Scholar 

  58. Horton, C. W.: Signal Processing of Underwater Acoustic Waves. Supt of Docs., U.S. Govt. Print. Off. Washington (1969)

    Google Scholar 

  59. Jensen, F. B.: Computational Ocean Acoustics. American Institute of Physics, New York (1993)

    MATH  Google Scholar 

  60. Wilson, O. B.: Introduction to The Theory and Design of Sonar Transducers. Peninsula Publishing, Newport Beach (1985)

    Google Scholar 

  61. Beranek, L. L., Ver, I. L.: Noise and Vibration Control Engineering: Principles and Applications. Wiley, New York (1992)

    Google Scholar 

  62. Jonson, A. J. L.: Address at US naval institute Annapolis seminar and 123rd annual meeting. Annapolis (1997)

    Google Scholar 

  63. Moffat, J.: Complexity Theory and Network Centric Warfare. CCRP, Washington (2003)

    Google Scholar 

  64. Albert, D. S., Garstka, J. Stein, F. P.: Network Centric Warfare: Developing and Leveraging Information Superiority, 2nd Edn. CCRP, Washington (2002)

    Google Scholar 

  65. Hosking, R. H.: Choosing the right DSP for real time embedded systems. Electronic Design, 48-24, pp. 137–146 (2000)

    Google Scholar 

  66. Shin, F. B., Kil, D. H.: Full spectrum signal processing using a classify-before-detection paradigm. J. Acoust. Soc. Amer., 99–94 (1996)

    Google Scholar 

  67. Olmo, G., Magli, E., Presti, L. L.: Joint statistical signal detection and estimation Part I: theoretical aspects of the problem. Signal Processing, 80, pp. 57–73 (2000)

    Article  MATH  Google Scholar 

  68. Walrod, J.: Sensor networks for network centric warfare. In: Proc. of NCW Conference, Fall Church (2000)

    Google Scholar 

  69. Bonito, G.: Sensor Array Projects and Networks & Other Useful Links, www.lternet.edu (2003)

    Google Scholar 

  70. National Research Council of USA (Eds): Network Centric Naval Forces: a Transition Strategy for Enhancing Operational capabilities. NA Press, Washington (2000)

    Google Scholar 

  71. Trider, R. C.: A fast Fourier transform (FFT) based on sonar signal processor. IEEE Trans., ASSP-26, pp. 15–20 (1978)

    Google Scholar 

  72. Rudnick, P.: Digital beamforming in the frequency domain. J. Acoust. Soc. of Amer., 46, pp. 1089–1090 (1969)

    Article  ADS  Google Scholar 

  73. Bartram, J. F., Ramseyer, R., Heines, J.: Fifth generation digital sonar processing. IEEE trans., OE-2, pp. 337–343 (1977)

    Google Scholar 

  74. Feeley, M.: ARCI Heralds Acoustic Revolution. UDT Forum, pp. 10–14, Lockheed Martin Comp., Bethesda, http://www.udt-europe.com (2005)

    Google Scholar 

  75. Hanna, M. T., Simaan, M: Absolutely optimum array filters for sensor arrays. IEEE Trans. ASSP-33, pp. 1380–1386 (1985)

    Google Scholar 

  76. Li, Q. H: The performance of the optimum array filter for sensor arrays. In: Proceedings of ICASSP 87, pp. 2324–2327, Dallas (1987)

    Google Scholar 

  77. Li, Q. H.: A Combined Architecture of Adaptive Line Enhancer and Adaptive Noise Canceller. Technical Report, Princeton Univ. (1985)

    Google Scholar 

  78. Widrow, B., Steams, S. D.: Adaptive Signal Processing. Prentice Hall, New Jersey (1985)

    MATH  Google Scholar 

  79. Rickard, J. T., Zeidler, J. R.: Second order output statistics of adaptive line enhancer. IEEE Trans., ASSP-27, pp. 31–39 (1979)

    Google Scholar 

  80. Rasmussen, R. A.: Studies related to the design and use of time / bearing sonar display. AD report 690540 (1968)

    Google Scholar 

  81. Danid, E., Neri, D. F., Kobus, D. A., et al.: Effect of background and foreground color coding on detection: acoustic data analysis. AD-A report 154105 (1985)

    Google Scholar 

  82. Butler, W. B.: Engineering guidelines for the use of color on the sonar display. AD report 782597 (1974)

    Google Scholar 

  83. Sittler, R. W.: An optimal data association problem in surveillence theory. IEEE Trans. Military Electronics, 8-2, pp. 125–139 (1964)

    Article  Google Scholar 

  84. Middleton, D., Esposito, R.: Simultaneous optimum detection and estimation of signal in noise. IEEE Trans., IT-14-3, pp. 434–444 (1968)

    Google Scholar 

  85. Jaffer, A. and Gupta, S. C.: Coupled detection-estimation of Gaussian processes in Gaussian noise. IEEE Trans., IT-18-1, pp. 106–110 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Q. (2012). Design of Digital Sonar. In: Digital Sonar Design in Underwater Acoustics. Advanced Topics in Science and Technology in China, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18290-7_5

Download citation

Publish with us

Policies and ethics