Skip to main content

Incremental Learning on Trajectory Clustering

  • Chapter
Innovations in Defence Support Systems – 3

Part of the book series: Studies in Computational Intelligence ((SCI,volume 336))

Abstract

Scene understanding corresponds to the real time process of perceiving, analysing and elaborating an interpretation of a 3D dynamic scene observed through a network of cameras. The whole challenge consists in managing this huge amount of information and in structuring all the knowledge. On-line Clustering is an efficient manner to process such huge amounts of data. On-line processing is indeed an important capability required to perform monitoring and behaviour analysis on a long-term basis. In this paper we show how a simple clustering algorithm can be tuned to perform on-line. The system works by finding the main trajectory patterns of people in the video. We present results obtained on real videos corresponding to the monitoring of the Toulouse airport in France.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cofriend, http://easaier.silogic.fr/co-friend/ , http://easaier.silogic.fr/co-friend/

  2. Anjum, N., Cavallaro, A.: Single camera calibration for trajectory-based behavior analysi. In: IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 147–152. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  3. Antonini, G., Thiran, J.: Counting pedestrians in video sequences using trajectory clustering. IEEE Transactions on Circuits and Systems for Video Technology 16, 1008–1020 (2006)

    Article  Google Scholar 

  4. Avanzi, A., Bremond, F., Tornieri, C., Thonnat, M.: Design and assessment of an intelligent activity monitoring platform. EURASIP Journal on Advances in Signal Processing 2005, 2359–2374 (2005)

    Article  MATH  Google Scholar 

  5. Bashir, F., Khokhar, A., Schonfeld, D.: Object trajectory-based activity classification and recognition using hidden markov models. IEEE Transactions on Image Processing 16, 1912–1919 (2007)

    Article  MathSciNet  Google Scholar 

  6. Campello, R., Hruschka, E.: A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems 157, 2858–2875 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carpenter, G.A., Grossberg, S.: A self-organizing neural network for supervised learning, recognition, and prediction. IEEE Communications Magazine 30, 38–49 (1992)

    Article  Google Scholar 

  8. Carpenter, G.A., Grossberg, S., Reynolds, J.: Artmap: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks 4, 565–588 (1991)

    Article  Google Scholar 

  9. Davies, D., Bouldin, D.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 224–227 (1979)

    Article  Google Scholar 

  10. Dunn, J.: Well-separated clusters and optimal fuzzy partitions. Cybernetics and Systems 4, 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  11. Foresti, G., Micheloni, C., Snidaro, L.: Event classification for automatic visual-based surveillance of parking lots. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 314–317. IEEE, Los Alamitos (2004)

    Chapter  Google Scholar 

  12. Fusier, F., Valentin, V., Bremond, F., Thonnat, M., Borg, M., Thirde, D., Ferryman, J.: Video understanding for complex activity recognition. Machine Vision and Applications 18, 167–188 (2007)

    Article  MATH  Google Scholar 

  13. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, United States (1999)

    Google Scholar 

  14. Hartigan, J.A.: Clustering algorithms. John Wiley & Sons, Inc., New York (1975)

    MATH  Google Scholar 

  15. Jantke, K.: Types of incremental learning. In: AAAI Symposium on Training Issues in Incremental Learning, pp. 23–25 (1993)

    Google Scholar 

  16. Kaufman, L., Rousseeuw, P.: Finding groups in data. An introduction to cluster analysis, New York (1990)

    Google Scholar 

  17. Lange, S., Grieser, G.: On the power of incremental learning. Theoretical Computer Science 288, 277–307 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Livny, M., Zhang, T., Ramakrishnan, R.: Birch: an efficient data clustering method for very large databases. In: ACM SIGMOD International Conference on Management of Data, Montreal, vol. 1, pp. 103–114 (1996)

    Google Scholar 

  19. Muhlbaier, M.D., Topalis, A., Polikar, R.: Learn++.nc: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Transactions on Neural Networks 20, 152–168 (2009)

    Article  Google Scholar 

  20. Naftel, A., Khalid, S.: Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Multimedia Systems 12, 227–238 (2006)

    Article  Google Scholar 

  21. Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 831–843 (2000)

    Article  Google Scholar 

  22. Piciarelli, C., Foresti, G., Snidaro, L.: Trajectory clustering and its applications for video surveillance. In: Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, 2005, pp. 40–45. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  23. Polikar, R., Upda, L., Upda, S., Honavar, V.: Learn++: an incremental learning algorithm for supervised neural networks. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews) 31, 497–508 (2001)

    Article  Google Scholar 

  24. Porikli, F.: Learning object trajectory patterns by spectral clustering. In: 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 2, pp. 1171–1174. IEEE, Los Alamitos (2004)

    Chapter  Google Scholar 

  25. Seipone, T., Bullinaria, J.: Evolving neural networks that suffer minimal catastrophic forgetting. In: Modeling Language, Cognition and Action - Proceedings of the Ninth Neural Computation and Psychology Workshop, pp. 385–390. World Scientific Publishing Co. Pte. Ltd., Singapore (2005)

    Chapter  Google Scholar 

  26. Sharma, A.: A note on batch and incremental learnability. Journal of Computer and System Sciences 56, 272–276 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading (2005)

    Google Scholar 

  28. Vu, V.-T., Brémond, F., Thonnat, M.: Automatic video interpretation: A recognition algorithm for temporal scenarios based on pre-compiled scenario models. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 523–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  29. Vijaya, P.: Leaders subleaders: An efficient hierarchical clustering algorithm for large data sets. Pattern Recognition Letters 25, 505–513 (2004)

    Article  Google Scholar 

  30. Zhou, Z., Chen, Z.: Hybrid decision tree. Knowledge-based systems 15, 515–528 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patino, L., Bremond, F., Thonnat, M. (2011). Incremental Learning on Trajectory Clustering. In: Remagnino, P., Monekosso, D.N., Jain, L.C. (eds) Innovations in Defence Support Systems – 3. Studies in Computational Intelligence, vol 336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18278-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18278-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18277-8

  • Online ISBN: 978-3-642-18278-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics