Skip to main content

A Multi-cellular Based Self-organizing Approach for Distributed Multi-Robot Systems

  • Conference paper
  • 742 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 341))

Abstract

Inspired by the major principles of gene regulation and cellular interactions in multi-cellular development, this paper proposes a distributed self-organizing multi-robot system for pattern formation. In our approach, multiple robots are able to self-organize themselves into various patterns driven by the dynamics of a gene regulatory network model. The pattern information is embedded into the gene regulation model, analog to the morphogen gradient in multi-cellular development. Various empirical analysis of the system robustness to the changes in tasks, noise in the robot system and changes in environment has been conducted. Simulation results demonstrate that the proposed method is both effective for pattern formation and robust to environmental changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albayrak, O.: Line and circle formation of distributed autonomous mobile robots with limited sensor range. Ph.D. dissertation, Naval Postgraduate School, Monterey, CA (June 1996)

    Google Scholar 

  2. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC (July 2006)

    Google Scholar 

  3. Deb, K., Agrawal, R.B.: Simulated Binary Crossover for Continuous Search Space. Complex Systems 2(9), 115–148 (1995)

    MathSciNet  Google Scholar 

  4. Deb, K., Goyal, M.: A Combined Genetic Adaptive Search (GeneAS) for Engineering Design. Computer Science and Informatics 4(26), 30–45 (1996)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  7. Desai, J., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation 17(6), 905–908 (2001)

    Article  Google Scholar 

  8. Endy, D., Brent, R.: Modeling cellular behavior. Nature 409, 391–395 (2001)

    Article  Google Scholar 

  9. Gierer, A.: Generation of biological patterns and form: some physical, mathematical, and logical aspects. Prog. Biophys. Mol. Biol. 37, 1–47 (1993)

    Article  Google Scholar 

  10. Guo, H., Meng, Y., Jin, Y.: Self-Adaptive Multi-Robot Construction using Gene Regulatory Networks. In: IEEE Symposium on Artificial Life (ALIFE 2009), Nashville, TN, USA, March 30- April 2 (2009)

    Google Scholar 

  11. Hasty, J., McMillen, D., Isaacs, F., Collins, J.J.: Computational studies of gene regulatory networks: In numero molecular biology. Nat. Rev. Genet. 2, 268–279 (2001)

    Article  Google Scholar 

  12. Hsieh, M.A., Kumar, V.: Pattern Generation with Multiple Robots. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida (May 2006)

    Google Scholar 

  13. Kauffman, S.A.: The origins of order: self-organization and selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  14. Kelly, K.: Out of Control – The New Biology of machines, Social Systems and Economic World. Basic Books, New York (1994)

    Google Scholar 

  15. Maini, P.K., Painter, K.J., Nguyen, P.C.: Spatial pattern formation in chemical and biological systems. J. Chem. Soc., Garaday Trans. 93(20), 3601–3610

    Google Scholar 

  16. McAdams, H.H., Arkin, A.: Simulation of prokaryotic genetic circuits. Ann. Rev. Biophys. Biomol. Struct. 27, 199–224 (1998)

    Article  Google Scholar 

  17. Meng, Y., Gan, J.: LIVS: Local interaction via virtual stigmergy coordination in distributed search and collective cleanup. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), San Diego, CA, USA (2007)

    Google Scholar 

  18. Meng, Y., Gan, J.: A Distributed Swarm Intelligence based Algorithm for a Cooperative Multi-Robot Construction Task. In: IEEE Swarm Intelligence Symposium, St. Louis, Missouri (September 21-23, 2008)

    Google Scholar 

  19. Salazar-Ciudad, I., Garcia-Fernandez, H., Sole, R.V.: Gene networks capable of pattern formation: from induction to reaction-diffusion. Journal of Theoretical Biology 205, 587–603 (2000)

    Article  Google Scholar 

  20. Shen, W., Will, P., Galstyan, A.: Hormone-Inspired Self-Organization and Distributed Control of Robotic Swarms. Autonomous Robots 17, 93–105 (2004)

    Article  Google Scholar 

  21. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing (1999)

    Google Scholar 

  22. Taylor, T.: A Genetic Regulatory Network-Inspired Real-Time controller for a Group of Underwater Robots. In: Proceedings of Eighth Conference on Intelligent Autonomous Systems, IAS-8 (2004)

    Google Scholar 

  23. Turing, A.M.: The chemical basis of morphogenesis. Philos Trans. R. Soc. London B 237 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, Y., Guo, H., Jin, Y. (2011). A Multi-cellular Based Self-organizing Approach for Distributed Multi-Robot Systems. In: Doncieux, S., Bredèche, N., Mouret, JB. (eds) New Horizons in Evolutionary Robotics. Studies in Computational Intelligence, vol 341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18272-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18272-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18271-6

  • Online ISBN: 978-3-642-18272-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics