Skip to main content

Evolutionary Algorithms to Analyse and Design a Controller for a Flapping Wings Aircraft

  • Conference paper
New Horizons in Evolutionary Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 341))

Abstract

Evolutionary Algorithms are now mature optimization tools, especially in a multi-objective context. This ability is used here to help explore, analyse and, on this basis, propose a controller for a complex robotics system: a flapping wings aircraft. A multi-objective optimization is performed to find the best parameters of sinusoidal wings kinematics. Multi-objective algorithms generate a set of trade-off solutions instead of a single solution. The feedback is then potentially more informative in a multi-objective context relative to the one of a single objective setup: the set of trade-off solutions can be analyzed to characterize the studied system. Such an approach is applied to study a simulated flapping wing aircraft. The speed-energy relation is empirically evaluated and the analysis of the relations between the parameters of the kinematics and speed has led, in a further step, to the synthesis of an open-loop controller allowing to change speed during flight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Back, T., Hoffmeister, F., Schwefel, H.: A survey of evolution strategies. In: Proceedings of the Fourth International Conference on Genetic Algorithms (1991)

    Google Scholar 

  2. Bongard, J., Lipson, H.: Nonlinear System Identification Using Coevolution of Models and Tests. IEEE Transactions on Evolutionary Computation 9(4), 361–384 (2005)

    Article  Google Scholar 

  3. Coello-Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary algorithms for solving multi-objective problems. Springer-Verlag New York Inc. (2007)

    Google Scholar 

  4. Coello-Coello, C., Lamont, G. (eds.): Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  5. Dasgupta, D.Z.M. (ed.): Evolutionary Algorithms in Engineering Applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  6. Deb, K.: Multi-objective optimization using evolutionay algorithms. Wiley, Chichester (2001)

    Google Scholar 

  7. Deb, K., Mohan, M., Mishra, S.: Evaluating the epsilon-Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. Evolutionary Computatition 13(4), 501–525 (2005)

    Article  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Deb, K., Srinivasan, A.: INNOVIZATION: Discovery of Innovative Design Principles Through Multiobjective Evolutionary Optimization. In: Multiobjective Problem Solving from Nature: From Concepts to Applications, p. 243 (2007)

    Google Scholar 

  10. Druot, T.: Technical report on the implementation and validation of a flight mechanics simulator for flapping articulated wings. Tech. rep. (2004)

    Google Scholar 

  11. Hubel, T., Tropea, C.: Experimental investigation of a mapping wing model. Experiments in Fluids 46, 945–961 (2009)

    Article  Google Scholar 

  12. Kohonen, T.: Self-Organizing Maps. Springer series in information sciences, 3rd edn., vol. 30. Springer, Berlin (2001)

    Google Scholar 

  13. Koos, S., Mouret, J., Doncieux, S.: Automatic system identification based on coevolution of models and tests. In: Proceedings of IEEE Conference on Evolutionary Computation (2009)

    Google Scholar 

  14. Koos, S., Mouret, J.B., Doncieux, S.: Crossing the Reality Gap in Evolutionary Robotics by Promoting Transferable Controllers. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010. ACM, New York (2010)

    Google Scholar 

  15. de Margerie, E., Mouret, J.B., Doncieux, S., Meyer, J.A.: Artificial evolution of the morphology and kinematics in a flapping-wing mini UAV. Bioinspired and Biomimetics 2, 65–82 (2007)

    Article  Google Scholar 

  16. Messac, A., Mattson, C.: Normal constraint method with guarantee of even representation of complete pareto frontier. AIAA journal 42(10), 2101–2111 (2004)

    Article  Google Scholar 

  17. Mouret, J.B., Doncieux, S., Meyer, J.A.: Incremental evolution of target-following neuro-controllers for flapping-wing animats. In: Nolfi, S., Baldassare, G., Calabretta, R., Hallam, J., Marocco, D., Meyer, J.A., Miglino, O., Parisi, D. (eds.) From Animals to Animats: Proceedings of the 9th International Conference on the Simulation of Adaptive Behavior (SAB), Rome, Italy, pp. 606–618 (2006)

    Google Scholar 

  18. Park, K., Rosen, M., Hedenstrom, A.: Flight kinematics of the barn swallow (hirundo rustica) over a wide range of speeds in a wind tunnel. Journal of Experimenal Biology 204(15), 2741–2750 (2001)

    Google Scholar 

  19. Rakotomamonjy, T.: Modelisation et controle du vol d’un microdrone a ailes battantes. Ph.D. thesis, Université Paul Cezanne (2006)

    Google Scholar 

  20. Rechenberg, I., Eigen, M.: Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution (1973)

    Google Scholar 

  21. Schwefel, H.: Evolutionsstrategie und numerische Optimierung. TU Berlin, Germany (1975)

    Google Scholar 

  22. Tan, K., Khor, E., Lee, T.: Multiobjective evolutionary algorithms and applications. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  23. Tennekes, H.: The simple science of flight (from insects to jumbo jets). MIT Press, Cambridge (1996)

    Google Scholar 

  24. Thomson, S., Mattson, C., Colton, M., Harston, S.P., Carlson, D., Culter, M.: Experiment-based optimization of flapping wings kinematics. In: Proceedings of the 47th Aerospace Sciences Meeting (2009)

    Google Scholar 

  25. Tobalske, B., Dial, K.: Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. Journal of Experimenal Biology 199(2), 263–280 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doncieux, S., Hamdaoui, M. (2011). Evolutionary Algorithms to Analyse and Design a Controller for a Flapping Wings Aircraft. In: Doncieux, S., Bredèche, N., Mouret, JB. (eds) New Horizons in Evolutionary Robotics. Studies in Computational Intelligence, vol 341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18272-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18272-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18271-6

  • Online ISBN: 978-3-642-18272-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics