Skip to main content

Novelty-Based Multiobjectivization

  • Conference paper
New Horizons in Evolutionary Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 341))

Abstract

Novelty search is a recent and promising approach to evolve neurocontrollers, especially to drive robots. The main idea is to maximize the novelty of behaviors instead of the efficiency. However, abandoning the efficiency objective(s) may be too radical in many contexts. In this paper, a Pareto-based multi-objective evolutionary algorithmis employed to reconcile novelty search with objective-based optimization by following a multiobjectivization process. Several multiobjectivizations based on behavioral novelty and on behavioral diversity are compared on a maze navigation task. Results show that the bi-objective variant “Novelty + Fitness” is better at fine-tuning behaviors than basic novelty search, while keeping a comparable number of iterations to converge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbass, H.A., Deb, K.: Searching under multi-evolutionary pressures. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 391–404. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communication of the ACM 18(9), 509–517 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bui, L., Abbass, H.A., Branke, J.: Multiobjective optimization for dynamic environments. Proceedings of the IEEE-CEC 3, 2349–2356 (2005)

    Google Scholar 

  4. Deb, K.: Multi-objectives optimization using evolutionnary algorithms. Wiley, Chichester (2001)

    Google Scholar 

  5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Proceedings of PPSN VI, pp. 849–858 (2000)

    Google Scholar 

  6. Doncieux, S., Mouret, J.B.: Single step evolution of robot controllers for sequential tasks. In: Proceedings of GECCO 2009, ACM, New York (2009)

    Google Scholar 

  7. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the Fourth International Conference on Evolutionary Programming, pp. 416–423 (1993)

    Google Scholar 

  8. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms, pp. 148–154. Morgan Kaufmann, San Francisco (1987)

    Google Scholar 

  9. Gomez, F.: Sustaining diversity using behavioral information distance. In: Proceedings of GECCO 2009 (2009)

    Google Scholar 

  10. Greiner, D., Emperador, J., Winter, G., Galván, B.: Improving Computational Mechanics Optimum Design Using Helper Objectives: An Application in Frame Bar Structures. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 575–589. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Handl, J., Lovell, S.C., Knowles, J.: Multiobjectivization by decomposition of scalar cost functions. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 31–40. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. de Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diversity using multi-objective methods. In: Proceedings of GECCO 2001, pp. 11–18 (2001)

    Google Scholar 

  13. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing Local Optima in Single-Objective Problems by Multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 268–282. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Lehman, J., Stanley, K.: Exploiting open-endedness to solve problems through the search for novelty. In: Proceedings of Artificial Life XI, pp. 329–336 (2008)

    Google Scholar 

  15. Mouret, J.B., Doncieux, S.: Incremental Evolution of Animats Behaviors as a Multi-objective Optimization. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 210–219. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Mouret, J.B., Doncieux, S.: Evolving modular neural-networks through exaptation. In: Proceedings of IEEE Congress on Evolutionary Computation, IEEE-CEC (2009)

    Google Scholar 

  17. Mouret, J.B., Doncieux, S.: Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In: Proceedings of IEEE-CEC (2009)

    Google Scholar 

  18. Mouret, J.B., Doncieux, S.: Using behavioral exploration objectives to solve deceptive problems in neuro-evolution. In: Proceedings of GECCO (2009)

    Google Scholar 

  19. Praditwong, K., Yao, X.: How well do multi-objective evolutionary algorithms scale to large problems. In: Proceedings of IEEE-CEC, pp. 3959–3966 (2007)

    Google Scholar 

  20. Purshouse, R.C., Fleming, P.J.: On the Evolutionary Optimization of Many Conflicting Objectives. IEEE Transactions on Evolutionary Computation 11(6), 770–784 (2007)

    Article  Google Scholar 

  21. Risi, S., Vanderbleek, S.D., Hughes, C.E., Stanley, K.O.: How novelty search escapes the deceptive trap of learning to learn. In: Proceedings of GECCO (2009)

    Google Scholar 

  22. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 102(2), 99–127 (2002)

    Article  Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  24. Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolutionary algorithms. Evolutionary Computation 11(2), 151–167 (2003)

    Article  Google Scholar 

  25. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mouret, JB. (2011). Novelty-Based Multiobjectivization. In: Doncieux, S., Bredèche, N., Mouret, JB. (eds) New Horizons in Evolutionary Robotics. Studies in Computational Intelligence, vol 341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18272-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18272-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18271-6

  • Online ISBN: 978-3-642-18272-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics