Skip to main content

Introduction

  • Chapter

Part of the book series: Nonlinear Physical Science ((NPS))

Abstract

Many problems in the natural and engineering sciences can be modeled as evolution processes. Mathematically this leads to either discrete or continuous dynamical systems, i.e. to either difference or differential equations. Usually such dynamical systems are nonlinear or even discontinuous and depend on parameters. Consequently the study of qualitative behaviour of their solutions is very difficult. Rather effective method for handling dynamical systems is the bifurcation theory, when the original problem is a perturbation of a solvable problem, and we are interested in qualitative changes of properties of solutions for small parameter variations. Nowadays the bifurcation and perturbation theories are well developed and methods applied by these theories are rather broad including functional-analytical tools and numerical simulations as well [113].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. CHICONE: Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34, Springer, New York, 2006.

    MATH  Google Scholar 

  2. S. ELAYDI: An Introduction to Difference Equations, Springer, New York, 2005.

    MATH  Google Scholar 

  3. M. FARKAS: Periodic Motions, Springer, New York, 1994.

    Book  MATH  Google Scholar 

  4. J. GUCKENHEIMER & P. HOLMES: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.

    MATH  Google Scholar 

  5. J. K. HALE & H. KOÇAK: Dynamics and Bifurcations, Springer, New York, 1991.

    Book  MATH  Google Scholar 

  6. M.C. IRWIN: Smooth Dynamical Systems, Academic Press, London, 1980.

    MATH  Google Scholar 

  7. Y.A. KUZNETSOV: Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112, Springer, New York, 2004.

    Book  MATH  Google Scholar 

  8. M. MEDVEĎ: Fundamentals of Dynamical Systems and Bifurcation Theory, Adam Hilger, Bristol, 1992.

    MATH  Google Scholar 

  9. C. ROBINSON: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, 1998.

    Google Scholar 

  10. M. RONTO & A.M. SAOMOILENKO: Numerical-Analytic Methods in the Theory of Boundary-Value Problems, World Scientific Publishing Co., Singapore, 2001.

    Google Scholar 

  11. J.J. STOKER: Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience, New York, 1950.

    MATH  Google Scholar 

  12. A. STUART & A.R. HUMPHRIES: Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  13. M. TABOR: Chaos and Integrability in Nonlinear Dynamics: An Itroduction, Willey-Interscience, New York, 1989.

    Google Scholar 

  14. J. AWREJCEWICZ & M.M. HOLICKE: Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods, World Scientific Publishing Co., Singapore, 2007.

    MATH  Google Scholar 

  15. M. CENCINI, F. CECCONI & A. VULPIANI: Chaos: from Simple Models to Complex Systems, World Scientific Publishing Co., Singapore, 2009.

    Book  Google Scholar 

  16. R. CHACÓN: Control of Homoclinic Chaos by Weak Periodic Perturbations, World Scientific Publishing Co., Singapore, 2005.

    MATH  Google Scholar 

  17. S.N. CHOW & J.K. HALE: Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  18. R. DEVANEY: An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, Menlo Park, CA, 1986.

    MATH  Google Scholar 

  19. S. WIGGINS: Chaotic Transport in Dynamical Systems, Springer, New York, 1992.

    Book  MATH  Google Scholar 

  20. S. WIGGINS: Global Bifurcations and Chaos, Analytical Methods, Applied Mathematical Sciences, 73, Springer-Verlag, New York, NY, 1988.

    Book  MATH  Google Scholar 

  21. P. HOLMES & J. MARSDEN: A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam, Arch. Rational Mech. Anal., 76 (1981), 135–165.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A. FIDLIN: Nonlinear Oscillations in Mechanical Engineering, Springer, Berlin, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fečkan, M. (2011). Introduction. In: Bifurcation and Chaos in Discontinuous and Continuous Systems. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18269-3_1

Download citation

Publish with us

Policies and ethics