Skip to main content

Activity Patterns and Metabolism

  • Chapter
Book cover Activity Patterns in Small Mammals

Part of the book series: Ecological Studies ((ECOLSTUD,volume 141))

Abstract

A living organism may be regarded as a converter of resources into copies of itself (Calow and Townsend 1981). As all dynamic processes take time, time is sometimes counted as a vital resource, along with energy and various nutrients (Herbers 1981; Bunnel and Harestad 1990). Technically this is not necessary, because describing metabolic processes as rates automatically makes time part of the dynamics of other variables. However, the rates of resource acquisition and expenditure may differ; they may be regulated, and thus they can be subject to natural selection. In this context it is convenient to speak of time as a resource to be optimally managed. The life strategies of various species may be reflected in different patterns of basic life processes dynamics; in other words, species strategies differ in their allocation of time. We observe a diversity of activity patterns, changing in space and time, within hours or seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altmann SA (1987) The impact of locomotor energetics on mammalian foraging. J Zool Lond 211:215–225

    Article  Google Scholar 

  • Andersen DC, MacMahon JA(1981) Population dynamics and bioenergetics of a fossorial herbivore, Thomomys talpoides (Rodentia: Geomyidae), in a spruce-fir sere. Ecol Monogr 5: 179–202

    Article  Google Scholar 

  • Belovsky GE (1984) Herbivore optimal foraging: a comparative test of three models. Am Nat 124:97–115

    Article  Google Scholar 

  • Buckner CH (1964) Metabolism, food capacity, and feeding behavior in four species of shrews. Can J Zool 42:259–279

    Article  CAS  Google Scholar 

  • Bunnel FL, Harestad AS (1990) Activity budgets and body weight in mammals: how sloppy can mammals be? Curr Mamm 2:245–305

    Google Scholar 

  • Calow P, Townsend CR (1981) Energetics, ecology and evolution. In: Townsend CR, Calow P (eds) Physiological ecology: an evolutionary approach to resource use. Blackwell, Oxford, pp3–19

    Google Scholar 

  • Chappell MA, Bartholomew GA (1981) Activity and thermoregulation in the antelope ground squirrel Ammospermophilus leucurus in winter and summer. Physiol Zool 54:215–223

    Google Scholar 

  • Degen AA (1994) Field metabolic rates of Acomys russatus and Acomys cahirinus, and a comparison with other rodents. Isr J Zool 40:127–134

    Google Scholar 

  • Du Toit JT, Jarvis JUM, Louw GN (1985) Nutrition and burrowing energetics of the Cape mole rat Georychus capensis. Oecologia 66:81–87

    Article  Google Scholar 

  • Ferron J, Quellet JP, Lemay Y (1986) Spring and summer time budgets and feeding behavior of the red squirrel (Tamiasciurus hudsonicus). Can J Zool 64:385–391

    Article  Google Scholar 

  • Garland T Jr (1983) Scaling the ecological cost of transport to body mass in terrestrial mammals. Am Nat 121:571–587

    Article  Google Scholar 

  • Gerkema MP, Daan S (1985) Ultradian rhythms in behavior: the case of the common vole (Microtus arvalis). Exp Brain Res [Suppl] 12:11–31

    Article  Google Scholar 

  • Grodzinski W, Weiner J (1984) Energetics of small and large mammals. Acta Zool Fenn 172: 7–10

    Google Scholar 

  • Grodzinski W, Wunder BA (1975) Ecological energetics of small mammals. In: Golley FB, Petrusewicz K, Ryszkowski L (eds) Small mammals: their productivity and population dynamics, Int Biol Program 5. Cambridge University Press, Cambridge, pp 173–204

    Google Scholar 

  • Halle S (1993) Diel pattern of predation risk in microtine rodents. Oikos 68:510–518

    Article  Google Scholar 

  • Halle S (1995) Diel pattern of locomotor activity in populations of root voles, Microtus oeconomus.J Biol Rhythms 10:211–224

    Article  PubMed  CAS  Google Scholar 

  • Hammond KA, Diamond J (1997) Maximal sustained energy budgets in humans and animals. Nature 386:457–462

    Article  PubMed  CAS  Google Scholar 

  • Hammond KA, Konarzewski M, Torres RM, Diamond J (1994) Metabolic ceilings under a combination of peak energy demands. Physiol Zool 67:1479–1506

    Google Scholar 

  • Harvey PH, Pagel MD, Rees JA (1991) Mammalian metabolism and life histories. Am Nat 137:556–566

    Article  Google Scholar 

  • Herbers JM (1981) Time resources and laziness in animals. Oecologia 49:252–262

    Article  Google Scholar 

  • Hoyt DF, Kenagy GJ (1988) Energy costs of walking and running gaits and their aerobic limits in golden-mantled ground squirrels. Physiol Zool 61:34–40

    Google Scholar 

  • Hume ID (1989) Optimal digestive strategies in mammalian herbivores. Physiol Zool 62: 1145–1163

    Google Scholar 

  • Jensen IM (1983) Metabolic rates of the hairy-tailed mole Parascalops breweri (Bachman 1842). J Mamm 64:453–462

    Article  Google Scholar 

  • Karasov WH (1981) Daily energy expenditure and the cost of activity in a free-living mammal. Oecologia 51:253–259

    Article  Google Scholar 

  • Karasov WH (1992) Daily energy expenditure and the cost of activity in mammals. Am Zool 32:238–248

    Google Scholar 

  • Kenagy GJ, Sharbaugh SM, Nagy KA (1989) Annual cycle of energy and time expenditure in a golden-mantled ground squirrel population. Oecologia 78:269–282

    Article  Google Scholar 

  • Konarzewski M, Diamond J (1994) Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physiol Zool 67:1186–1212

    Google Scholar 

  • Koteja P (1995) Maximum cold-induced energy assimilation in a rodent, Apodemus flavicollis. Comp Biochem Physiol 112A:479–485

    Article  CAS  Google Scholar 

  • Koteja P (1996) Limits to the energy budget in a rodent, Peromyscus maniculatus: the central limitation hypothesis. Physiol Zool 69:981–993

    Google Scholar 

  • Koteja P, Weiner J (1993) Mice, voles and hamsters: metabolic rates and adaptive strategies in muroid rodents. Oikos 66:505–514

    Article  Google Scholar 

  • Koteja P, Król E, Stalinski J, Weiner J (1993) Energy budget limitation and partitioning in rodents of altricial and precocial modes of reproduction. Mesogee 53:7–12

    Google Scholar 

  • Kozlowski J, Weiner J (1997) Interspecific allometries are by-products of body size optimization. Am Nat 149:352–380

    Article  Google Scholar 

  • MacArthur RA, Krause RE (1989) Energy requirements of freely diving muskrats (Ondatrazibethicus). Can J Zool 67:2194–2200

    Article  Google Scholar 

  • McDevitt RM, Speakman JR (1994a) Central limits to sustainable metabolic rate have no role in cold acclimation of the short-tailed field vole (Microtus agrestis). Physiol Zool 67:1117–1139

    Google Scholar 

  • McDevitt RM, Speakman JR (1994b) Limits to sustainable metabolic rate during transient exposure to low temperatures in short-tailed field voles (Microtus agrestis). Physiol Zool 67: 1103–1116

    Google Scholar 

  • McNab BK (1987) Basal rate and phylogeny. Funct Ecol 1:159–167

    Google Scholar 

  • McNab BK (1988) Complications inherent in scaling the basal rate of metabolism in mammals. Q Rev Biol 63:25–54

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (1992) The comparative energetics of rigid endothermy: the Arvicolidae. J Zool Lond 227:585–606

    Article  Google Scholar 

  • Melcher JC, Armitage KB, Porter WP (1990) Thermal influences on the activity and energetics of yellow-bellied marmots (Marmota flaviventris). Physiol Zool 63:803–820

    Google Scholar 

  • Morgan KR, Price MV (1992) Foraging in heteromyid rodents: the energy cost of scratchdigging. Ecology 73:2260–2272

    Article  Google Scholar 

  • Nagy KA (1987) Field metabolic rate and food requirement scaling in mammals and birds. Ecol Monogr 57:111–128

    Article  Google Scholar 

  • Nagy KA (1994) Field bioenergetics of mammals: what determines field metabolic rates? Aust J Zool 42:43–53

    Article  Google Scholar 

  • Peterson CC, Nagy KA, Diamond J (1990) Sustained metabolic scope. Proc Natl Acad Sci USA 87:2324–2328

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Salsbury CM, Armitage KB (1994) Resting and field metabolic rates of adult male yellow-bellied marmots, Marmota flaviventris. Comp Biochem Physiol 108A:579–588

    Article  Google Scholar 

  • Shipley LA, Gross JE, Spalinger DE, Hobbs NT, Wunder BA (1994) The scaling of intake rate in mammalian herbivores. Am Nat 143:1055–1082

    Article  Google Scholar 

  • Sibly RM (1981) Strategies of digestion and defecation. In: Townsend CR, Calow P(eds) Physiological ecology: an evolutionary approach to resource use. Blackwell, Oxford, pp 3–19

    Google Scholar 

  • Taylor CR, Heglund NC, Maloiy GMO (1982) Energetics and mechanics of terrestrial locomotion. 1. Metabolic energy consumption as a function of speed and body size in birds and mammals. J Exp Biol 97:1–21

    PubMed  CAS  Google Scholar 

  • Thompson SD (1985) Bipedal hopping and seed-dispersion selection by heteromyiod rodents: the role of locomotion energetics. Ecology 66:220–229

    Article  Google Scholar 

  • Vleck D (1979) The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol Zool 52:122–136

    Google Scholar 

  • Vleck D (1981) Burrow structure and foraging costs in the fossorial rodent, Thomomys bottae. Oecologia 49:391–396

    Article  Google Scholar 

  • Weiner J (1987) Maximum energy assimilation rates in the Djungarian hamster (Phodopus sungorus). Oecologia 72:297–302

    Article  Google Scholar 

  • Weiner J (1989) Metabolic constraints to mammalian energy budgets. Acta Theriol 34:3–35

    Google Scholar 

  • Weiner J (1992) Physiological limits to sustainable energy budgets in birds and mammals: ecological implications. TREE 7:384–388

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weiner, J. (2000). Activity Patterns and Metabolism. In: Halle, S., Stenseth, N.C. (eds) Activity Patterns in Small Mammals. Ecological Studies, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18264-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18264-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62128-4

  • Online ISBN: 978-3-642-18264-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics