Skip to main content

Activity Patterns and the Biological Clock in Mammals

  • Chapter
Activity Patterns in Small Mammals

Part of the book series: Ecological Studies ((ECOLSTUD,volume 141))

Abstract

One of the most consistent features of the physical and social environment is change. Many changes occur in an unpredictable manner, whereas others occur in precise rhythmic patterns. It is thought that internal clocks evolved as a way of adapting behaviour and physiology to these regularly occurring changes in the environment. Although biological clocks can be set to a number of different cycle lengths (see Aschoff 1981), clocks that exhibit daily cycles are prevalent in mammals. Internal clocks that time daily rhythms are called ‘circadian clocks’. Their name is derived from the Latin ‘circa’ meaning about or around and ‘dies’ or ‘dian’ meaning day. It sounds as if these clocks might be fairly imprecise because their name suggests that they time cycles that only approximate a day. In fact, circadian clocks are extraordinarily precise and are found frequently to be inaccurate by less than a minute in each cycle (Pittendrigh and Daan 1976a). These clocks received their name because they measure out a genetically determined daily cycle that deviates slightly, but significantly from 24 h. In animals, the ‘period’ (i.e., time required to complete one full cycle) of circadian cycles usually ranges between 23–26 h. Although the period of circadian clocks varies among species and individuals of the same species, within an individual the period remains quite consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers HE (1981) Gonadal hormones organize and modulate the circadian system of the rat. Am J Physiol 241:.R62–R66

    PubMed  CAS  Google Scholar 

  • Albers HE, Gerall AA, Axelson JF (1981) Effect of reproductive state on circadian periodicity in the rat. Physiol Behav 26:21–25

    Article  PubMed  CAS  Google Scholar 

  • Albers HE, Carter DS, Darrow JM, Goldman BD (1983) Circadian organization of locomotor activity in the Turkish hamster (Mesocricetus brandti). Behav Neural Biol 37:362–366

    Article  PubMed  CAS  Google Scholar 

  • Albers HE, Liou SY, Ferris CF, Stopa EG, Zoeller RT ( 1991 ) Neurochemistry of circadian timing. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 263–288

    Google Scholar 

  • Albers HE, Liou SY, Stopa EG, Zoeller RT (1992) Neurotransmitter co-localization and circadian rhythms. In: Joss J, Buijs RM (eds) Tilders progress in brain research. Elsevier, Amsterdam, pp 289–307

    Google Scholar 

  • Aschoff J (1959) Periodik licht-and dunkelaktiver Tiere unter konstanten Umgebungsbedingungen. Pflügers Arch Ges Physiol 270:9

    Article  Google Scholar 

  • Aschoff J (1979) Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z Tierpsychol 49:225–249

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1981) A survey in biological rhythms. In: Aschoff J (ed) Biological rhythms. Handbook of behavioral neurobiology, vol 4. Plenum Press, New York, pp 3–10

    Google Scholar 

  • Axelson JF, Gerall AA, Albers HE (1981) The effect of progesterone on the estrous activity cycle of the rat. Physiol Behav 25:631–635

    Article  Google Scholar 

  • Bartness TJ, Goldman BD (1989) Mammalian pineal melatonin: a clock for all seasons. Experientia 45:939–945

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ, Powers JB, Hastings MH, Bittman EL, Goldman BD (1993) The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception and the photoperiodic control of seasonal responses? J Pineal Res 15:161–190

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ, Wade GN (1985) Photoperiodic control of seasonal body weight cycles in hamsters. Neurosci Biobehav Rev 9:599–611

    Article  PubMed  CAS  Google Scholar 

  • Baumgardner DJ, Ward SE, Dewsbury DA (1980) Diurnal patterning of eight activities in 14 species of muroid rodents. Anim Learn and Behav 8:322–330

    Article  Google Scholar 

  • Biello SM, Harrington ME, Mason R (1991) Geniculo-hypothalamic tract lesions block chlordi-azepoxide-induced phase advance in Syrian hamsters. Brain Res 552:47–52

    Article  PubMed  CAS  Google Scholar 

  • Block M, Zucker I (1976) Circadian rhythms of rat locomotor activity after lesions of midbrain raphe nuclei. J Comp Physiol 109:235–247

    Article  Google Scholar 

  • Boulos Z, Rosenwasser AM, Terman M (1980) Feeding schedules and the circadian organization of behavior in the rat. Behav Brain Res 1:39–65

    Article  PubMed  CAS  Google Scholar 

  • Brown FA, Hastings JW, Palmer JD (1970) The biological clock: two views. Academic Press, New York

    Google Scholar 

  • Crowley M, Bovet J (1980) Social synchronization of circadian rhythms in deer mice (Peromyscus maniculatus). Behav Ecol Sociobiol 7:99–105

    Article  Google Scholar 

  • Daan S, Damassa D, Pittendrigh CS (1975) An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proc Natl Acad Sci USA 72:3744–3747

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dark J, Pickard GE, Zucker I (1985) Persistence of circannual rhythms in ground squirrels with lesions of the suprachiasmatic nuclei. Brain Res 332:201–207

    Article  PubMed  CAS  Google Scholar 

  • Dark J, Kilduff TS, Heller HC, Licht P, Zucker I (1990) Suprachiasmatic nuclei influence hibernation rhythms of golden-mantled ground squirrels. Brain Res 509:111–118

    Article  PubMed  CAS  Google Scholar 

  • Davis FC, Stice SB, Menaker M (1987) Activity and reproductive state in the hamster: independent control by social stimuli and a circadian pacemaker. Physiol Behav 40:583–590

    Article  PubMed  CAS  Google Scholar 

  • DeCoursey PJ (1986) Light-sampling behavior in photoentrainment of a rodent circadian rhythm. J Comp Physiol A 159:161–169

    Article  PubMed  CAS  Google Scholar 

  • Dewsbury DA (1980) Wheel-running behavior in 12 species of muroid rodents. Behav Proc 5: 271–280

    Article  Google Scholar 

  • Drucker-Colin R, Aguilar-Roblero R, Fernandez-Cancino F, Rattoni FB (1984) Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats. Brain Res 311:353–357

    Article  PubMed  CAS  Google Scholar 

  • Edgar DM, Miller JD, Prosser RA, Dean RR, Dement WC (1993) Serotonin and the mammalian circadian system: II. Phase-shifting rat behavioral rhythms with serotonergic agonists. J Biol Rhythms 8:17–31

    Article  PubMed  CAS  Google Scholar 

  • Elliott JA, Goldman BD (1981) Seasonal reproduction: photoperiodism and biological clocks. In: Adler NT (ed) Neuroendocrinology of reproduction. Plenum Press, New York, pp 377–423

    Chapter  Google Scholar 

  • Elliott JA, Tamarkin L (1994) Complex circadian regulation of pineal melatonin and wheelrunning in Syrian hamsters. J Comp Physiol A 174:469–484

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K (1965) Evidence of the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 64:37–85

    Google Scholar 

  • Gerkema MP, Groos GA, Daan S (1990) Differential elimination of circadian and ultradian rhythmicity by hypothalamic lesions in the common vole, Microtus arvalis. J Biol Rhythms 5:81–95

    Article  PubMed  CAS  Google Scholar 

  • Gerkema MP, Daan S, Wilbrink M, Hop MW, van der Leest F (1993) Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system. J Biol Rhythms 8:151–171

    Article  PubMed  CAS  Google Scholar 

  • Gibbs FP (1981) Temperature dependence of rat circadian pacemaker. Am J Physiol 241: R17–R20

    PubMed  CAS  Google Scholar 

  • Gibbs FP (1983) Temperature dependence of the hamster circadian pacemaker. Am J Physiol 244:R607–R610

    PubMed  CAS  Google Scholar 

  • Groos GA, Hendriks J (1979) Regularly firing neurons in the rat suprachiasmatic nucleus. Experientia 35:1597–1598

    Article  PubMed  CAS  Google Scholar 

  • Gwinner E (1986) Circannual rhythms. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Hawking F, Lobban MC, Gammage K, Worms MJ (1971) Circadian rhythms (activity, temperature, urine and microfilariae) in dog, cat, hen, duck, Thamnomys and Gerbillus. J Interdiscipl Cycle Res 2:455–473

    Article  Google Scholar 

  • Hendrickson AE, Wagoner N, Cowan WM (1972) An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z Zell 135:1–26

    Article  CAS  Google Scholar 

  • Hoffmann K (1973) The influence of photoperiod and melatonin on testis size, body weight and pelage colour in the Djungarian hamster (Phodopus sungorus). J Comp Physiol 85:267–282

    Article  CAS  Google Scholar 

  • Illnerova H (1991) The suprachiasmatic nucleus and rhythmic pineal melatonin production. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 197–216

    Google Scholar 

  • Inouye ST, Kawamura H (1979) Persistence of circadian rhythmicity in mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76:5961–5966

    Google Scholar 

  • Janik D, Mrosovsky N (1993) Nonphotically induced phase shifts of circadian rhythms in the golden hamster: activity-response curves at different ambient temperatures. Physiol Behav 53:431–436

    Article  PubMed  CAS  Google Scholar 

  • Johnson RF, Moore RY, Morin LP (1988) Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res 460:297–313

    Article  PubMed  CAS  Google Scholar 

  • Kavanau JL (1969) Influences of light on activity of small mammals. Ecology 50:548–557

    Article  Google Scholar 

  • Kavanau JL (1971) Locomotion and activity phasing of some medium-sized mammals. J Mammal 52:386–403

    Article  PubMed  CAS  Google Scholar 

  • Kenagy GJ (1978) Seasonality of endogenous circadian rhythms in a diurnal rodent Ammospermophilus leucurus and a nocturnal rodent Dipodomys merriami. J Comp Physiol A 128: 21–36

    Article  Google Scholar 

  • Lee TM, Zucker I (1995) Seasonal variations in circadian rhythms persist in gonadectomized golden-mantled ground squirrels. J Biol Rhythms 10:188–195

    Article  PubMed  CAS  Google Scholar 

  • Lee TM, Carmichael MS, Zucker I(1986) Circannual variations in circadian rhythms of ground squirrels. Am J Physiol 250:R831–R836

    PubMed  CAS  Google Scholar 

  • Lee TM, Holmes WG, Zucker I (1990) Temperature dependence of circadian rhythms in goldenmantled ground squirrels. J Biol Rhythms 5:25–34

    Article  PubMed  CAS  Google Scholar 

  • Madison DM (1985) Activity rhythm and spacing. In: Tamarin RH (ed) Biology of new world Microtus. Am Soc Mammal Spec Publ 8, Shippensburg, pp 373–419

    Google Scholar 

  • Marimuthu G, Subbaraj R, Chandrashekaran MK (1978) Social synchronization of the activity rhythm in a cave-dwelling insectivorous bat. Naturwissenschaften 65:600

    Article  Google Scholar 

  • Marimuthu G, Rajan S, Chandrashekaran MK (1981) Social entrainment of the circadian rhythm in the flight activity of the microchiropteran bat Hipposideros speoris. Behav Ecol Sociobiol 8:147–150

    Article  Google Scholar 

  • Meijer JH, Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671–707

    PubMed  CAS  Google Scholar 

  • Moore RY, Card JP (1985) Visual pathways and the entrainment of circadian rhythms. Ann NY Acad Sci 453:123–133

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic nuclear lesions in the rat. Brain Res 42:201–206

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1–14

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA (1982) The clocks that time us. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Morin LP, Fitzgerald KM, Zucker I (1977) Estradiol shortens the period of hamster circadian rhythms. Science 196:305–307

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N (1976) Lipid programmes and life strategies in hibernators. Am Zool 16:685–697

    CAS  Google Scholar 

  • Mrosovsky N (1988) Phase response curves for social entrainment. J Comp Physiol A 162:35–46

    Article  PubMed  CAS  Google Scholar 

  • Pengelley ET, Fisher KC (1963) The effect of temperature and photoperiod on the yearly hibernating behavior of the captive golden-mantled ground squirrels (Citellus lateralis tescorwn). Can J Zool 41:1103–1120

    Article  Google Scholar 

  • Perrigo G (1987) Breeding and feeding strategies in deer mice and house mice when females are challenged to work for their food. Anim Behav 35:1298–1316

    Article  Google Scholar 

  • Perrigo G (1990) Food, sex, time and effort in a small mammal: energy allocation strategies for survival and reproduction. Behaviour 114:1–4

    Article  Google Scholar 

  • Pickard GE, Ralph MR, Menaker M(1987) The intergeniculate leaflet partially mediates effects of light on circadian rhythms. ) Biol Rhythms 2:35–56

    Article  CAS  Google Scholar 

  • Pietrewicz AT, Hoff MP, Higgins SA (1982) Activity rhythms in the Mongolian gerbil under natural light conditions. Physiol Behav 29:377–380

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS, Caldarola PC (1973) General homeostasis of the frequency of circadian oscillations. Proc Natl Acad Sci USA 70:2697–2701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pittendrigh CS, Daan S(1976a) A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency. J Comp Physiol 106:223–252

    Article  Google Scholar 

  • Pittendrigh CS, Daan S (1976b) A functional analysis of circadian pacemakers in nocturnal rodents: V. Pacemaker structure: a clock for all seasons. J Comp Physiol 106:333–355

    Article  Google Scholar 

  • Pratt BL, Goldman BD (1986) Activity rhythms and photoperiodism of Syrian hamsters in a simulated burrow system. Physiol Behav 36:83–89

    Article  PubMed  CAS  Google Scholar 

  • Puchalski W, Lynch GR (1991) Circadian characteristics of Djungarian hamsters: effects of photoperiodic pretreatment and artificial selection. Am J Physiol 261:R670–R676

    PubMed  CAS  Google Scholar 

  • Puchalski W, Lynch GR (1994) Photoperiodic time measurement in Djungarian hamsters evaluated from T-cycle studies. Am J Physiol 267:R191–R201

    PubMed  CAS  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determnines circadian period. Science 247:975–978

    Article  PubMed  CAS  Google Scholar 

  • Reebs SG, Mrosovsky N (1989a) Large phase-shifts of circadian rhythms caused by induced running in a re-entrainment paradigm: the role of pulse duration and light. J Comp Physiol A 165:819–825

    Article  PubMed  CAS  Google Scholar 

  • Reebs SG, Mrosovsky N (1989b) Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythms 4:39–48

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE, Peters A (1975) An autoradiographic study of the projections from the lateral geniculate body of the rat. Brain Res 92:261–294

    Article  Google Scholar 

  • Richter CP (1922) A behavioristic study of the activity of the rat. Comp Psychol Monogr 1:1–54

    Google Scholar 

  • Richter CP (1965) Biological clocks in medicine and psychiatry. Thomas, Springfield, IL

    Google Scholar 

  • Richter CP (1970) Dependence of successful mating in rats on functioning of the 24-hour clocks of the male and female. Commun Behav Biol 5:1–5

    Google Scholar 

  • Rusak B (1990) Biological rhythms: from physiology to behavior. In: Montplaisir J, Godbout R (eds) Sleep and biological rhythms. Oxford University Press, New York, pp 11–24

    Google Scholar 

  • Rusak B, Mistlerger RE, Losier B, Jones CH (1988) Daily hoarding opportunity entrains the pacemaker for hamster activity rhythms. J Comp Physiol A 164:165–171

    Article  PubMed  CAS  Google Scholar 

  • Silverman H J, Zucker I (1976) Absence of post-fast food compensation in the golden hamster (Mesocricetus auratus). Physiol Behav 17:271–285

    Article  PubMed  CAS  Google Scholar 

  • Stephan FK (1981) Limits of entrainment to periodic feeding in rats with suprachiasmatic lesions. J Comp Physiol A 143:401–410

    Article  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sterman MB, Knauss T, Hehmann D, Clements CD (1965) Circadian sleep and waking patterns in the laboratory cat. Electroencephalogr Clin Neurophysiol 19:506–517

    Article  Google Scholar 

  • Stockman ER, Albers HE, Baum MJ (1985) Activity in the ferret: oestradiol effects and circadian rhythms. Anim Behav 33:150–154

    Article  PubMed  CAS  Google Scholar 

  • Stutz AM (1972) Diurnal rhythms of spontaneous activity in the Mongolian gerbil. Physiol Zool 45:325–334

    Google Scholar 

  • Sulzman FM, Fuller CA, Moore-Ede MC (1979) Tonic effects of light on the circadian system of the squirrel monkey. J Comp Physiol 129:43–50

    Article  CAS  Google Scholar 

  • Takahashi IS, Menaker M (1980) Interaction of estradiol and progesterone: effects on circadian locomotor rhythms of female golden hamsters. Am J Physiol 239:R497–R504

    PubMed  CAS  Google Scholar 

  • Tokura H, Aschoff I (1978) Circadian activity rhythms of the pig-tailed macaque, Macaca nemestrina, under constant illumination. Pflügers Arch Ges Physiol 376:241–243

    Article  CAS  Google Scholar 

  • van den Pol AN (1985) The hypothalamic suprachiasmatic nucleus of the rat: intrinsic anatomy. J Comp Neurol 15:1049–1086

    Google Scholar 

  • Viswanathan N (1989) Presence-absence cycles of the mother and not light-darkness are the Zeitgeber for the circadian rhythm of newborn mice. Experientia 45:383–385

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan N, Chandrashekaran MK (1985) Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature 317:530–531

    Article  PubMed  CAS  Google Scholar 

  • Zee PC, Rosenberg RS, Turek FW (1992) Effects of aging on entrainment and rate of resynchroniztion of circadian locomotor activity. Am I Physiol 263:R1099–R1103

    CAS  Google Scholar 

  • Zucker I, Boshes M, Dark I (1983) Suprachiasmatic nuclei influence circannual and circadian rhythms of ground squirrels. Am I Physiol 244:R472–R480

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartness, T.J., Albers, H.E. (2000). Activity Patterns and the Biological Clock in Mammals. In: Halle, S., Stenseth, N.C. (eds) Activity Patterns in Small Mammals. Ecological Studies, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18264-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18264-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62128-4

  • Online ISBN: 978-3-642-18264-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics