Categorical Perception of Consonants and Vowels: Evidence from a Neurophonetic Model of Speech Production and Perception

  • Bernd J. Kröger
  • Peter Birkholz
  • Jim Kannampuzha
  • Christiane Neuschaefer-Rube
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6456)


While the behavioral side of categorical perception in speech is al-ready well investigated, little is known concerning its underlying neural mecha-nisms. In this study, a computer-implemented neurophonetic model of speech production and perception is used in order to elucidate the functional neural mechanisms responsible for categorical perception. 20 instances of the model (“virtual listeners/speakers”) underwent a speech acquisition training procedure and then performed behavioral tests, i.e. identification and discrimination experiments based on vocalic and CV-syllabic speech stimuli. These virtual listeners showed the expected behavioral results. The inspection of the neural organization of virtual listeners indicated clustering in the case of categorical perception and no clustering in the case of non-categorical (continuous) perception for neurons representing the stimuli. These results highlight a possible neural organization underlying categorical and continuous perception.


speech perception categorical perception identification discrimination neural model of speech production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liberman, A.M., Harris, K.S., Hoffman, H.S., Griffith, B.C.: The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology 54, 358–368 (1957)CrossRefGoogle Scholar
  2. 2.
    Fry, D.B., Abramson, A.S., Eimas, P.D., Liberman, A.M.: The identification and discrimination of synthetic vowels. Language and Speech 5, 171–189 (1962)Google Scholar
  3. 3.
    Eimas, P.D.: The relation between identification and discrimination along speech and non-speech continua. Language and Speech 6, 206–217 (1963)Google Scholar
  4. 4.
    Mattingly, I.G., Liberman, A.M., Syrdal, A.K., Halves, T.: Discrimination in speech and nonspeech modes. Cognitive Psychology 2, 131–157 (1971)CrossRefGoogle Scholar
  5. 5.
    Burns, E.M., Campbell, S.L.: Frequency and frequency-ration resolution by possessors of absolute and relative pitch: Examplex of categorical perception? Journal of the Acoustical Society of America 96, 2704–2719 (1994)CrossRefGoogle Scholar
  6. 6.
    Mirman, D., Holt, L.L., McClelland, J.L.: Categorization and discrimination of nonspeech sounds: differences between steady-state and rapidly-changing acoustic cues. Journal of the Acoustical Society of America 116, 1198–1207 (2004)CrossRefGoogle Scholar
  7. 7.
    Poeppel, D., Guillemin, A., Thompson, J., Fritz, J., Bavelier, D., Braun, A.R.: Auditory lexical decision, categorical perception, and FM direction discrimination differentially engage left and right auditory cortex. Neuropsychologia 42, 183–200 (2004)CrossRefGoogle Scholar
  8. 8.
    Liebenthal, E., Binder, J.R., Spitzer, S.M., Possing, E.T., Medler, D.A.: Neural substrates of phonemic perception, vol. 15, pp. 1621–1631 (2005)Google Scholar
  9. 9.
    Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11, 209–243 (2003)CrossRefGoogle Scholar
  10. 10.
    Kröger, B.J., Kannampuzha, J., Neuschaefer-Rube, C.: Towards a neurocomputational model of speech production and perception. Speech Communication 51, 793–809 (2009)CrossRefGoogle Scholar
  11. 11.
    Kröger, B.J., Birkholz, P.: A gesture-based concept for speech movement control in articulatory speech synthesis. In: Esposito, A., Faundez-Zanuy, M., Keller, E., Marinaro, M. (eds.) COST Action 2102. LNCS (LNAI), vol. 4775, pp. 174–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Guenther, F.H., Ghosh, S.S., Tourville, J.A.: Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language 96, 280–301 (2006)CrossRefGoogle Scholar
  13. 13.
    Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Obleser, J., Boecker, H., Drzezga, A., Haslinger, B., Hennenlotter, A., Roettinger, M., Eulitz, C., Rauschecker, J.P.: Vowel sound extraction in anterior superior temporal cortex. Human Brain Mapping 27, 562–571 (2006)CrossRefGoogle Scholar
  15. 15.
    Damper, R.I., Harnad, S.R.: Neural network models of categorical perception. Perception and Psychophysics 62, 843–867 (2000)CrossRefGoogle Scholar
  16. 16.
    Kuhl, P.K.: Early language acquisition: cracking the speech code. Nature Reviews Neuroscience 5, 831–843 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bernd J. Kröger
    • 1
  • Peter Birkholz
    • 1
  • Jim Kannampuzha
    • 1
  • Christiane Neuschaefer-Rube
    • 1
  1. 1.Department of Phoniatrics, Pedaudiology, and Communication DisordersUniversity Hospital Aachen and RWTH Aachen UniversityAachenGermany

Personalised recommendations