Neuroelectric Methodologies for the Study of the Economic Decisions in Humans

  • Giovanni Vecchiato
  • Fabio Babiloni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6456)


In recent years the engagement of the customer with the brand or the company advertised has become the dominant issue in the agenda of marketers and advertisers. The aim of this paper is to elucidate if the remembering of TV commercials elicits particular brain activity and connectivity. Results suggest that the cortical activity and connectivity during the vision of the TV commercials that will be remembered by the analyzed healthy subjects is markedly different from the brain activity elicited during the observation of the TV commercials that will be forgotten. In particular, during the observation of the TV commercials that will be successively remembered the amount of cortical spectral activity from the frontal areas (BA 8 and 9) and from the parietal areas (BA 5, 7 and 40) is higher on when compared with the activity elicited by the observation of TV commercials that will be forgotten. The techniques presented here are also relevant in neuroeconomics and neuromarketing in order to investigate the neural substrates sub-serving other decision-making and recognition tasks.


Neuroeconomy neuromarketing EEG functional connectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cappo, J.: The Future of Advertising: New Media, New Clients, New Consumers in the Post-Television Age. McGraw-Hill, New York (2005)Google Scholar
  2. 2.
    Heath, R.: The Hidden Power of Advertising. World Advertising Research Center, Henley-on-Thames (2001)Google Scholar
  3. 3.
    McDonald, C.: Is your advertising working? World Advertising Center, Henley-on-Thames (2003)Google Scholar
  4. 4.
    Zaltman, G.: How Customer Think. Harvard Business School Press, Boston (2003)Google Scholar
  5. 5.
    Giep, F., Margot, B.: The Mental World of Brands. World Advertising Center, Henley-on-Thames (2001)Google Scholar
  6. 6.
    Lo Iodice, B.: Trends to Watch in 2008, Adage website (2007),
  7. 7.
    Zenith Optimedia (media services agency), Global ad market to accelerate in 2008 despite credit squeeze (2007),
  8. 8.
    Krugman, H.E.: Brain wave measures of media involvement. J. Advert. Res. 11, 3–10 (1971)Google Scholar
  9. 9.
    Ioannides, L., Theofilou, D., Burne, T., Ambler, T., Rose, S.: Real time processing of affective and cognitive stimuli in the human brain extracted from MEG signals. Brain Top. 13, 11–19 (2000)CrossRefGoogle Scholar
  10. 10.
    Ambler, T., Burne, T.: The Impact of Affect on Memory of Advertising. Journal of Advertising Research 39(2), 25–34 (1999)Google Scholar
  11. 11.
    Rotschild, M., Hyun, J.: Predicting Memory for Components of TV Commercials from EEC. Journal of Consumer Research 472–478 (1989)Google Scholar
  12. 12.
    Rossiter, J.R., Silberstein, R.B., Harris, P.G., Nield, G.A.: Brain imaging detection of visual scene encoding in long-term memory for TV commercials. J. Advert. Res. 41, 13–21 (2001)CrossRefGoogle Scholar
  13. 13.
    Young, C.: Brain waves, picture sorts®, and branding moments. J. Advert. Res. 42, 42–53 (2002)CrossRefGoogle Scholar
  14. 14.
    Nunez, P.L.: Neocortical dynamics and human EEG rhythms. Oxford University Press, New York (1995)Google Scholar
  15. 15.
    Bai, X., Towle, V.L., He, E.J., He, B.: Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI. Neuroimage 35(2), 598–608 (2006)CrossRefGoogle Scholar
  16. 16.
    He, B., Wang, Y., Wu, D.: “Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Trans. Biomed. Eng. 46, 1264–1268 (1999)CrossRefGoogle Scholar
  17. 17.
    He, B., Hori, J., Babiloni, F.: EEG Inverse Problems. In: Akay, M. (ed.) Wiley Encyclopedia in Biomedical Engineering, pp. 1355–1363. John Wiley & Sons, Inc., Chichester (2006)Google Scholar
  18. 18.
    Ding, L., Lai, Y., He, B.: Low resolution brain electromagnetic tomography in a realistic geometry head model: a simulation study. Physics in Medicine and Biology 50, 45–56 (2005)CrossRefGoogle Scholar
  19. 19.
    Ding, L., Worrell, G.A., Lagerlund, T.D., He, B.: Ictal Source Analysis: Localization and Imaging of Causal Interactions in Humans. NeuroImage 34, 575–586 (2007)CrossRefGoogle Scholar
  20. 20.
    Babiloni, F., Cincotti, F., Babiloni, C., Carducci, F., Basilisco, A., Rossini, P.M., Mattia, D., Astolfi, L., Ding, L., Ni, Y., Cheng, K., Christine, K., Sweeney, J., He, B.: Estimation of the cortical functional connectivity with the multimodal integration of high resolution EEG and fMRI data by Directed Transfer Function. Neuroimage 24(1), 118–131 (2005)CrossRefGoogle Scholar
  21. 21.
    Baccalà, L.A., Sameshima, K.: Partial Directed Coherence: a new concept in neural structure determination. Biol.Cybern. 84, 463–474 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Baccala, L., de Vico Fallani, F., Salinari, S., Ursino, M., Zavaglia, M., Ding, L., Edgar, J.C., Miller, G.A., He, B., Babiloni, F.: Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum. Brain Mapp. 28(2), 143–157 (2007)CrossRefGoogle Scholar
  23. 23.
    De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Salinari, S., Kurths, J., Cichocki, A., Gao, S., Colosimo, A., Babiloni, F.: Cortical Functional Connectivity Networks In Normal And Spinal Cord Injured Patients: Evaluation by Graph Analysis. In: Human Brain Mapping, February 21 (2007) (Epub ahead of print)Google Scholar
  24. 24.
    Grave de Peralta Menendez, R., Gonzalez Andino, S.L.: Distributed source models: standard solutions and new developments. In: Uhl, C. (ed.) Analysis of neurophysiological brain functioning, pp. 176–201. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Dale, A., Liu, A., Fischl, B., Buckner, R., Belliveau, J.W., Lewine, J., Halgren, E.: Dynamic Statistical Parametric Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity. Neuron 26, 55–67 (2000)CrossRefGoogle Scholar
  26. 26.
    Zar, J.: Biostatistical analysis. Prentice-Hall, Englewood Cliffs (1984)Google Scholar
  27. 27.
    Nowinski, W.L., Belov, D.: The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet. Neuroimage 20(1), 50–57 (2003)CrossRefGoogle Scholar
  28. 28.
    Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37p, 424–428 (1969)Google Scholar
  29. 29.
    Yook, S.H., Jeong, H., Barabási, A., Tu, Y.: Weighted Evolving Networks. Phys.Rev.Lett. 86(25), 5835–5838 (2001)CrossRefGoogle Scholar
  30. 30.
    Tulving, E., Kapur, S., Craik, F.I., Moscovitch, M., Houle, S.: Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc. Natl. Acad. Sci. USA 91(6), 2016–2020 (1994)CrossRefGoogle Scholar
  31. 31.
    Braeutigam, S., Rose, S.P.R., Swithenby, S.J., Ambler, T.: The distributed neuronal systems supporting choice-making in real-life situations: differences between men and women when choosing groceries detected using magnetoencephalography. Eur. J. Neurosci. 20, 293–302 (2004)CrossRefGoogle Scholar
  32. 32.
    Braeutigam, S.: Neuroeconomics–from neural systems to economic behaviour. Brain Res.Bull. 67(5), 355–360 (2005)CrossRefGoogle Scholar
  33. 33.
    Downar, J., Crawley, A.P., Mikulis, D.J., Davis, K.D.: The effect of task relevance on the cortical response to changes in visual and auditory stimuli: An event-related fMRI study. Neuroimage 14, 1256–1267 (2001)CrossRefGoogle Scholar
  34. 34.
    Downar, J., Crawley, A.P., Mikulis, D.J., Davis, K.D.: A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J. Neurophysiol. 87, 615–620 (2002)Google Scholar
  35. 35.
    Yantis, S., Schwarzbach, J., Serences, J.T., Carlson, R.L., Steinmetz, M.A., Pekar, J.J., Courtney, S.M.: Transient neural activity in human parietal cortex during spatial attention shifts. Nat. Neurosci. 5, 995–1002 (2002)CrossRefGoogle Scholar
  36. 36.
    Yantis, S., Serences, J.T.: Cortical mechanisms of space-based and object-based attentional control. Curr. Opin. Neurobiol. 13, 187–193 (2003)CrossRefGoogle Scholar
  37. 37.
    Liu, T., Slotnick, S.D., Serences, J.T., Yantis, S.: Cortical mechanisms of feature-based attentional control. Cereb Cortex 13, 1334–1343 (2003)CrossRefGoogle Scholar
  38. 38.
    Ambler, T., Braeutigam, S., Stins, J., Rose, S.P.R., Swithenby, S.J.: Salience and choice: neural correlates of shopping decisions Psychology & Marketing, vol. 21, pp. 247–261 (2004)Google Scholar
  39. 39.
    Plassmann, H., Ambler, T., Braeutigam, S., Kenning, P.: Kenning What can advertisers learn from neuroscience? International Journal of Advertising 26(2), 151–175 (2007)Google Scholar
  40. 40.
    Gallagher, H.L., Frith, C.D.: Functional imaging of ‘Theory of Mind’. Trends Cogn. Sci. 7, 77–83 (2003)CrossRefGoogle Scholar
  41. 41.
    Gallagher, H.L., Jack, A.I., Roepstorff, A., Frith, C.D.: Imaging the intentional stance in a competitive game. Neuroimage 16, 814–821 (2002)CrossRefGoogle Scholar
  42. 42.
    Walter, H., Adenzato, M., Ciaramidaro, A., Enrici, I., Pia, L., Bara, B.G.: Understanding intentions in social interaction: The role of the anterior paracingulate cortex. J. Cogn. Neurosci. 16, 1854–1863 (2004)CrossRefGoogle Scholar
  43. 43.
    Bruce, K., Rick, S., Elliott Wimmer, G., Prelec, D., Loewenstein, G.: Neural Predictors of Purchases. Neuron 53, 147–156 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Giovanni Vecchiato
    • 1
    • 2
  • Fabio Babiloni
    • 1
    • 2
  1. 1.Dept. Physiology and PharmacologyUniv. of Rome SapienzaRomeItaly
  2. 2.IRCCS Fondazione Santa LuciaRomeItaly

Personalised recommendations