Skip to main content

Evidence of Angiogenesis in Acute Myeloid Leukemia

  • Conference paper
Acute Leukemias VIII

Abstract

Angiogenesis plays a key role in the growth of solid tumors and in the development of metastases. An increased angiogenesis in bone marrow has been reported in children with acute lymphoblastic leukemia (Am J Pathol 150:815-821,1997). The purpose of the present study was to assess angiogenesis in bone marrow biopsies from 47 patients with newly diagnosed, untreated acute myeloid leukemia (AML). Control specimens (n=20) were obtained from patients with neo-plasic disorders without bone marrow involvement. The FAB distribution of the AML cases was as follows: 7 M1, 21 M2,1 M3,7 M4, 7 M5,2 M6 and 2 AMLs without defined subtype. The endothelial cells of microvessels were highlighted by immunohistochemical staining for thrombomodulin (TM) and von Willebrand factor (vWF). The 3 areas with the highest microvessel density in representative sections of each bone marrow core biopsy specimen were selected and the microvessels scored in x500 fields by two observers using light microscopy. A significant correlation was found between microvessel counts in bone marrow sections stained by vWF and TM antibodies (r = 0.828; p< 0.001). Using TM staining, AML marrows had (median [interquartile range]) 25.5 [22.1-29.3] microvessels / field while normal marrows had 13.2 [11.4-14.8] microvessels / field. Using vWF staining of the same specimens, AML marrows had 22.9 [16.1-26.2] microvessels / field while normal marrows had 9.8 [7.7-10.5] microvessels / field. The differences between the number of vessels / field in AML and controls were statistically significant for both TM (p= 0.0003) and vWF (p= 0.001) staining. When analyzed by FAB category, there was no difference in the average number of microvessels / field between the different subgroups of AML. In summary, we demonstrated that bone marrow in AML is associated with increased microvessel density. These findings suggest that antiangiogenic therapy might constitute a novel strategy for the treatment of acute myeloid leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gimbrone M, Leapman S, Cotran R, Folkman J (1972) Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136:261–276

    Article  PubMed  Google Scholar 

  2. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61

    Article  PubMed  CAS  Google Scholar 

  3. Nicosia RF, Tchao R, Leighton J (1986) Interaction between newly formed endothelial channels and carcinoma cells in plasma clot culture. Clin Exp Metastasis 4:91–104

    Article  PubMed  CAS  Google Scholar 

  4. Hamada J, Cavanaugh PG, Lotan O, Nicholson G (1992) Separable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothelial cells derived from target organs for metastasis. Br J Cancer 66:349–354

    Article  PubMed  CAS  Google Scholar 

  5. Rak JW, Filmus J, Kerbel RS (1996) Reciprocal paracrine interactions between tumor cells and endothelial cells: the angiogenesis progression hypothesis. Eur J Cancer 32:2438–2450

    Article  Google Scholar 

  6. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  7. Skobe M, Rockwell P, Goldstein N, Vosseier S, Fusenig NE (1997) Halting angiogenesis suppresses carcinoma cell invasion. Nature Medicine 3:1222–1227

    Article  PubMed  CAS  Google Scholar 

  8. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Eng J Med 324:1–8

    Article  CAS  Google Scholar 

  9. Gasparini G, Weidner N, Maluta S, Pozza F, Boracchi P, Mezzetti M, Testolin A, Bevilacqua P (1993) Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous cell carcinoma. Int J Cancer 55:738–744

    Article  Google Scholar 

  10. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409

    PubMed  CAS  Google Scholar 

  11. Yamazaki K, Abe S, Takeka H, Sukoh N, Watanabe N, Ogura S, Nakajima I, Isobe H, Inoue K, Kawakami Y (1994) Tumor angiogenesis in human lung adenocarcinoma. Cancer 74: 2245–2250

    Article  PubMed  CAS  Google Scholar 

  12. Ellis LM, Fidler IJ (1995) Angiogenesis and breast cancer metastasis. Lancet 346:388–390

    Article  PubMed  CAS  Google Scholar 

  13. Gasparini G, Harris AL (1995) Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol 13:765–782

    PubMed  CAS  Google Scholar 

  14. Maeda K, Chung YS, Takasuka S, Ogawa Y (1995) Tumor angiogenesis as a predictor of recurrence in gastric carcinoma. J Clin Oncol 13:477–481

    PubMed  CAS  Google Scholar 

  15. Wiggins DL, Granai CO, Steinhoff MM, Calabresi P (1995) Tumor angiogenesis as a prognostic factor in cervical carcinoma. Gynecol Oncol 56:353–356

    Article  PubMed  CAS  Google Scholar 

  16. Fontanini G, Lucchi M, Vignati S, Mussi A, Ciardiello F, De Laurentiis M, de Placido S, Basolo F, Angeletti CA, Bevilacqua G (1997) Angiogenesis as a prognostic indicator of survival in non-small cell lung carcinoma. A prospective study. J Natl Cancer Inst 89:881–886

    Article  PubMed  CAS  Google Scholar 

  17. Fernández AceLucchi M, Vignati S, Mussi A, Ciardiello F, De Laurentiis M, de Placido S, Basolo F, Angeletti CA, Bevilacqua G (1997) Angiogenesis as a prognostic indicator of survival in non-small cell

    Google Scholar 

  18. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87:503–508

    Article  PubMed  CAS  Google Scholar 

  19. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073

    PubMed  CAS  Google Scholar 

  20. Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F (1996) Angiogenesis spectrum in the stroma of B-cell non Hodgkin’s lymphomas. An immunohistochemical and structural study. Eur J Haematol 56:45–53

    Article  PubMed  CAS  Google Scholar 

  21. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J (1997) Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 150:815–821

    PubMed  CAS  Google Scholar 

  22. Shami PJ, Hussong JW, Rodgers GM (1998) Evidence of increased angiogenesis in the bone marrow of patients with acute nonlymphocytic leukemia. Blood 92(suppl l):512a, (abstr)

    Google Scholar 

  23. Aguayo A, Kantarjian H, Talpaz M, Estey E, Koller C, Estrov Z, O’Brien S, Keating M, Barlogie B, Albitar M (1998) Increased angiogenesis in chronic myeloid leukemia and myelodysplastic syndromes. Blood 92(suppl l):607a, (abstr)

    Google Scholar 

  24. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1985) Proposed revised criteria for the classification of acute myeloid leukemia: A report of the French-American-British Cooperative Group. Ann Intern Med 103:620–625

    PubMed  CAS  Google Scholar 

  25. Büchner T, Hiddemann W, Wörmann B, Löffler H, Gassmann W, Haferlach T, Fonatsch C, Haase D, Schoch C, Hossfeld D, Lengfelder E, Aul C, Heyll A, Maschmeyer G, Ludwig WD, Sauerland MC, Heinecke A (1999) Double induction strategy for acute myeloid leukemia: the effect of high-dose cytarabine with mitoxantrone instead of standarddose cytarabine with daunorubicin and 6-thioguanine: a randomized trial by the german AML cooperative group. Blood 93:4116–4124

    PubMed  Google Scholar 

  26. Mukai K, Rosai J, Burgdorf WHC (1980) Localisation of FVIII-R ag in vascular endothelial cells using an immunoperoxidase method. Am J Surg Pathol 4:273–276

    Article  PubMed  CAS  Google Scholar 

  27. Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, Pezzella F, Viale G, Weidner AL, Harris AL, Dirix LY (1996) Quantification of angiogenesis in solid tumors: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 32A:2474–2484

    Article  PubMed  CAS  Google Scholar 

  28. Miettinen M, Lindenmayer AE, Chaubal A (1994) Endothelial cell markers CD31, CD34 and BNH9 antibody to H-and Y-antigens—evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Mod Pathol 1:82–90

    Google Scholar 

  29. Mayurama I, Bell C, Majerus P (1985) Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics and on syncytiotrophoblasts of human placenta. J Cell Biol 101:363–371

    Article  Google Scholar 

  30. Vermeulen PB, Libura M, Libura J, O’Neill PJ, van Dam P, van Mark E, van Oosteron AT, Dirix LY (1997) Influence of investigator experience and microscopic field size on microvessel density in node-negative breast carcinoma. Breast Cancer Res Treat 42:165–172

    Article  PubMed  CAS  Google Scholar 

  31. Hansen S, Grabau DA, Rose C, Bak M, Sorensen FB (1998) Angiogenesis in breast cancer: a comparative study of the observer variability of methods for determining microvessel density. Lab Invest 78:1563–1573

    PubMed  CAS  Google Scholar 

  32. Cheson BC, Cassileth PA, Head DR, Schiffer CA, Bennett JM, Bloomfield CD, Brunning R, Gale RP, Grever MR, Keating MJ, Sawitsky A, Stass S, Weinstein H, Woods WG (1990) Report of the national cancer institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 8:813–819

    PubMed  CAS  Google Scholar 

  33. Vermeulen PB, Verhoven D, Fierens H, Hubens G, Goovaerts G, Van Marck E, De Bruijn EA, Van Oosterom AT, Dirix LY (1995) Microvessel quantification in primary colorectal carcinoma: an immunohistochemical study. Br J Cancer 71:340–343

    Article  PubMed  CAS  Google Scholar 

  34. Stephenson TJ, Mills PM (1985) Monoclonal antibodies to blood group isoantigens: an alternative marker to factor VIII related antigen for benign and malignant vascular endothelial cells. J Pathol 147:139–148

    Article  PubMed  CAS  Google Scholar 

  35. Rajkumar SV, Fonseca R, Witzig TE, Gertz MA, Greipp PR (1999) Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia 13:469–472

    Article  PubMed  CAS  Google Scholar 

  36. Bhunchet E, Fujieda K (1993) Capillarization and venularization of hepatic sinusoids in porcine serum-induced rat liver fibrosis: a mechanism to maintain liver blood flow. Hepatology 18:1450–1458

    Article  PubMed  CAS  Google Scholar 

  37. Martinez-Hernandez A, Martinez J (1991) The role of capillarization in hepatic failure: studies in carbon tetrachloride-induced cirrhosis. Hepatology 14:864–874

    Article  PubMed  CAS  Google Scholar 

  38. Dubuisson L, Boussarie L, Bedin CA, Balabaud C, Bioulac-Sage P (1995) Transformation of sinusoids into capillaries in a rat model of selenium-induced nodular regenerative hyperplasia: an immunolight and immunoelectron microscopic study. Hepatology 21:805–814

    PubMed  CAS  Google Scholar 

  39. García-Monz, Boussarie L, Bedin CA, Balabaud C, Bioulac-Sage P (1995) Transformation of sinusoids into capillaries in a rat model of selenium-induced nodular regenerative hyperplasia: an immunolight and immunoelectron microscopic study. Hepatology

    Google Scholar 

  40. Urashima S, Tsutsumi M, Nakase K, Wang JS, Takada A (1993) Studies on capillarization of the hepatic sinusoids in alcoholic liver disease. Alcohol Alcohol Suppl 1B:77–84

    PubMed  CAS  Google Scholar 

  41. Fernig DG, Gallaher JT (1994) Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res 5:353–377

    Article  PubMed  CAS  Google Scholar 

  42. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor / vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    PubMed  CAS  Google Scholar 

  43. Claffey KP, Robinson GS (1996) Regulation of VEGF / VPF expression in tumor cells: consequences for tumor growth and metastasis. Cancer Metastasis Rev 15:165–176

    Article  PubMed  CAS  Google Scholar 

  44. Fiedler W, Graeven U, Ergiin S, Verago S, Kilic N, Stockschläder M, Hossfeld DK (1997) Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 89:1870–1875

    PubMed  CAS  Google Scholar 

  45. Senger DR (1996) Molecular frame for angiogenesis: a complex web of interactions between extravasated plasma proteins and endothelial cell proteins induced by angiogenic cytokines. Am J Pathol 149:1–7

    PubMed  CAS  Google Scholar 

  46. McWilliam N, Robbie L, Booth N, Bennet B (1998) Plasminogen activator in acute myeloid leukemic marrows: u-PA in contrast to t-PA in normal marrows. Br J Haematol 101:626–631

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Padro, T. et al. (2001). Evidence of Angiogenesis in Acute Myeloid Leukemia. In: Büchner, T., Hiddemann, W., Wörmann, B., Schellong, G., Ritter, J., Creutzig, U. (eds) Acute Leukemias VIII. Haematology and Blood Transfusion / Hämatologie und Bluttransfusion, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18156-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18156-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62109-3

  • Online ISBN: 978-3-642-18156-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics