Skip to main content

Mineral Matter in Space

  • Chapter
Book cover Advanced Mineralogy

Abstract

The extended scope of mineralogy, including extraterrestrial materials, came first from increasingly sophisticated studies of meteorites, then from direct studies of lunar samples, then from the comparative mineralogy of terrestrial and giant planets, and finally from data on interplanetary dust and interstellar presolar mineral dust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey ME, Club SBM, Napter VM (1990) The origin of comets. Pergamon Press, Oxford

    Google Scholar 

  • Beatty JK, Chaikin A (eds) (1990) The new solar system. Cambridge University Press, Cambridge

    Google Scholar 

  • Boss AP (1985) Collapse and formation of stars. Sci Am 252:4–11

    Google Scholar 

  • Burrows A, Hubbard WB, Lunin JI (1989) Theoretical models of very low mass stars and Brown Dwarfs. Astrophys J 345:939–958

    Google Scholar 

  • Chabrier G, Shatzman E (eds) (1993) The equation of state in astrophysics. Proc IAU Coll No 147, Cambridge University Press, Cambridge

    Google Scholar 

  • Edmunds ME, Terlevich RJ (eds) (1992) Elements and cosmos. Cambridge University Press, Cambridge

    Google Scholar 

  • Encrenaz T, Bibring JP (1995) The solar system. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gehrels T (eds) (1982) Protostars and planets. Studies of stars formation and of the origin of the solar system. University of Arizona Press, Tucson

    Google Scholar 

  • Hawking St (1988) A brief history of time. From the Big Bang to Black Holes. Bentam Books

    Google Scholar 

  • Heide F, Wlotzka F (1995) Meteorites. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Koester D, Wernez K (1995) white Dwarfs. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Linde A (1990) Particle physics and inflationary cosmology. Harwood Academic Publishers, Chur

    Google Scholar 

  • Lipunov VM (1992) Astrophysics of neutron stars. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Luminet J-P (1992) Black holes, Cambridge University Press, Cambridge

    Google Scholar 

  • Mihalas D (1978) Stellar atmospheres. WH Freeman, San Francisco

    Google Scholar 

  • Prantzer NE, Vangioni-Flani M, Casse M (eds) (1992) Origin and evolution of the elements. Cambridge University Press, Cambridge

    Google Scholar 

  • Silk J (1980) The Big Bang. The creation and evolution of the Universe. WH Freeman, San Francisco

    Google Scholar 

  • Tenkolsky Sh (1983) Black holes, white dwarfs, and neutron stars. Wiley, New York

    Google Scholar 

  • Weinberg S (1977) The first three minutes. Basic Books, New York

    Google Scholar 

  • Whittet DCB (1992) Dust in the galactic environment. Hilger

    Google Scholar 

  • Winnewisser G, Pelz GC (eds) (1995) The physics and chemistry of interstellar molecular clouds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wynn-Williams S (1992) The fullness of space: nebulae, Stardust, and the interstellar medium. Cambridge University Press, Cambridge

    Google Scholar 

  • Zharkov VN, Gudkova TV (1992) Modern models of giant planets. In: High-pressure research. Terra Sei Publ, Tokyo, pp 393–401

    Google Scholar 

References

  • Allamandola LJ, Tielens AGGM (eds) (1989) Interstellar dust. IAU Symp 135. Kluwer, Dordrecht, 525 pp

    Google Scholar 

  • Bailey ME, Williams DA (eds) (1988) Dust in the universe. Cambridge University Press, Cambridge, 573 pp

    Google Scholar 

  • Blitz L (ed) (1990) The evolution of the interstellar medium. Astron Soc Pacific, San Francisco, 346 pp

    Google Scholar 

  • Burton WB, Elmegreen BG, Genzel R (1992) The galactic interstellar medium. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Draine BT (1995) Properties of dust in diffuse clouds. In: Ferrara A, McKee CF, Heiles C, Shapiro PR (eds) The physics of the interstellar medium and intergalactic medium. Astron Soc Pacific, San Francisco, pp 133–147

    Google Scholar 

  • Herbig GH (1995) The diffuse interstellar bands. Annu Rev Astron Astrophys 33:19

    Google Scholar 

  • Hollenbach DJ, Thronson HA (eds) (1987) Interstellar processes. Reidel, Dordrecht, 807 pp

    Google Scholar 

  • Mathis JS (1990) Interstellar dust and extinction. Annu Rev Astron Astrophys 28:37–70

    Google Scholar 

  • Mathis JS, Rumpl W, Nordsieck KH (1977) The size distribution of interstellar grains. Astrophys J 217:425–433

    Google Scholar 

  • Whittet DC (1992) Dust in the galactic environment. Institute of Physics, London, 295 pp

    Google Scholar 

  • Wynn-Williams CG (1992) The fullness of space. Cambridge University Press, Cambridge, 202 pp

    Google Scholar 

References

  • Allaerts L, Lewis RS, Matsuda J, Anders E (1980) Isotopic anomalies of noble gases in meteorites and their origin. Presolar components in the Murchison C2 chondrite. Geochim Cosmochim Acta 44:189–209

    Google Scholar 

  • Anders E, Zinner E (1993) Interstellar grains in primitive meteorites: diamond, silicon carbide and graphite. Meteoritics 28:390–514

    Google Scholar 

  • Bernatowicz TJ, Gibbons PC, Lewis RS (1990) Electron energy loss spectrometry of interstellar diamond. Astrophys J 359:248–255

    Google Scholar 

  • Blake DF, Freund F, Krishnan K, Echer C, Shiff R, Bunch T, Tielens A, Lupari R, Hetherington C, Chang S (1988) The nature and origin of interstellar diamond. Nature 332:611–623

    Google Scholar 

  • Buerki PR, Lentwyles S (1991) Homogeneous nucleation of the diamond powder by C02-laser-driven gas-phase reactions. J Appl Phys 69:3739–3744

    Google Scholar 

  • Clayton DD (1989) Origin of heavy xenon in meteorite diamonds. Astrophys J 340:613–619

    Google Scholar 

  • Fisenko AV, Verchovsky AB, Semjonova LF (1994) Noble gases in the interstellar diamond of Efremovka CV3 chondrite. Geokhimia N7:916–927 (in Russian)

    Google Scholar 

  • Fisenko AV, Tatsy VF, Semjonova LF, Bolsheva LN (1995) Experimental studies of oxidation kinetics of the meteoritic diamonds by air oxygen. Lunar Planet Sci 26:397–398

    Google Scholar 

  • Fraundorf P, Fraundorf G, Bernatowicz T, Lewis R, Tang M (1989) Stardust in the TEM. Ultramicroscopy 27:401–412

    Google Scholar 

  • Huss GR (1990) Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism. Nature 347:159–162

    Google Scholar 

  • Huss GR, Lewis RS (1994) Noble gases in presollar diamonds: Three distinct components and their implications for diamond origins. Meteoritics 29:791–810

    Google Scholar 

  • Huss GR, Lewis RS (1995) Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim Cosmochim Acta 59:115–160

    Google Scholar 

  • Jorgensen UG (1988) Formation of Xe-HL-enriched diamond grains in stellar environments. Nature 332:702–705

    Google Scholar 

  • Lavrukhina AK, Fisenko AV (1994a) On the features and isotopic composition of elements composing the interstellar diamond, SiC and graphite in chrondites. Geokhimia N10: 1372–1382

    Google Scholar 

  • Lavrukhina AK, Fisenko AV (1994b) On the origin of the interstellar diamonds, SiC and graphite in chondrites. Geokhimia N11:1539–1546

    Google Scholar 

  • Lewis RS, Anders E (1988) Xenon-HL in diamonds from the Allende meteorite-composite nature. Lunar Planet Sci 19:679–680

    Google Scholar 

  • Lewis RS, Tang M, Wacker JF, Anders E, Steel E (1987) Interstellar diamonds in meteorites. Nature 326:160–162

    Google Scholar 

  • Lewis RS, Anders E, Draine BT (1989) Properties, detectability and origin of interstellar diamonds in meteorites. Nature 339:117–121

    Google Scholar 

  • Nuth JA, Allen JE Jr (1992) Supernovae as sources of interstellar diamonds. Astrophys Space Sci 196:117–123

    Google Scholar 

  • Ott U (1993) Interstellar grains in meteorites. Nature 364:25–33

    Google Scholar 

  • Russell SS, Arden JW, Pillinger CT (1991) Evidence for multiple sources of diamond from primitive chondrites. Science 254:1188–1191

    Google Scholar 

  • Swart PK, Grady MM, Pillinger CT, Anders E (1983) Interstellar carbon in meteorites. Science 220:406–410

    Google Scholar 

  • Tang M, Anders E (1988) Isotopic anomalies of the Ne, Xe, and ? in meteorites. II. Interstellar diamond and SiC: carriers of exotic noble gases. Geochim Cosmochim Acta 52:1235–1244

    Google Scholar 

  • Tielens AGGM, Seab CG, Hollenback DJ, McKee CF (1987) Shock processing of interstellar dust: diamond in sky. Astrophys 319:L109–L113

    Google Scholar 

  • Valter AA, Fisenko AV (1993) Diamonds in meteorites. Meteoritika 50:113–122 (in Russian)

    Google Scholar 

  • Verchovsky AB, Russell SS, Pillenger CT, Fisenko AV, Shukolyukov YuA (1993) Are the C light nitrogen and noble gases located in the same carrier? Lunar Planet Sci 24:1461–1462

    Google Scholar 

  • Virag A, Zinner E, Lewis RS, Tang M (1989) Isotopic composition of H, C, and N in ? diamonds from the Allende and Murray carbonaceous chondrites. Lunar Planet Sci 20: 1158–1159

    Google Scholar 

  • Wdowiak TJ (1987) Diamond formation in carbon-star atmosphere. Nature 328:385

    Google Scholar 

References

  • Bradley JP, Sandford SA, Walker RM (1988) Interplanetary dust particles. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. University Arizona Press, Tucson, pp 861–898

    Google Scholar 

  • Brownlee DE (1985) Cosmic dust: collection and research. Annu Rev Earth Planet Sei 13:147–173

    Google Scholar 

  • Mackinnon IDR, Rietmeijer FJM (1987) Mineralogy of chondritic interplanetary dust particles. Rev Geopyhs 25:1527–1553

    Google Scholar 

  • Rietmeijer FJM (1992) Mineralogy of primitive chondritic protoplanets in the early solar system. Trends Mineral 1:23–41

    Google Scholar 

  • Sandford SA (1987) The collection and analysis of extraterrestrial dust particles. Fundam Cosmic Phys 12:1–73s

    Google Scholar 

  • Thomas KL et al. (1993) Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim Cosmochim Acta 57:1551–1566

    Google Scholar 

  • Zolensky ME, Wilson TL, Rietmeijer FJM, Flynn G J (eds) (1994) Analysis of interplanetary dust. AIP Conf Proc 310, Am Inst Physics, New York, 357 pp

    Google Scholar 

References

  • Bonny P, Balageas D (1988) Entry corridor of micrometeorites containing organic material. Lunar Planet Sei Conf XXI:111–112

    Google Scholar 

  • Bradley JP (1988) Analysis of chondritic interplanetary dust thin-sections Geochim Cosmochim Acta 52:889–900

    Google Scholar 

  • Bradley JP, Humecki H J, Germani MS (1992) Combined infrared and analytical microscope studies of interplanetary dust particles. Astrophys J 394:643

    Google Scholar 

  • Brownlee DE (1981) Extraterrestrial component in deep sea sediments. In: Emiliani C (ed) The sea. vol 7. Wiley & Sons, New York, pp 773–762

    Google Scholar 

  • Brownlee DE (1985) Cosmic dust: collection and research. Annu Rev Earth Planet Sci 13:147–173

    Google Scholar 

  • Engrand C, Christophe Michel-Levy M, Jouret J, Kurat G, Maurette M, Perreau M (1994) Are the most C-rich Antarctic micrometeorites exotic? Meteoritics 29:464

    Google Scholar 

  • Engrand C, Deloule E, Hoppe P, Kurat G, Maurette M, Robert F (1996) Water contents of micrometeorites from Antarctica. Lunar Planet Sci Conf XXVII:337–338

    Google Scholar 

  • Hoppe P, Kurat G, Walter J, Maurette M (1995) Trace elements and oxygen isotopes in a CAI-bearing micrometeorite from Antarctica. Lunar Planet Sei Conf XXVI:623–624

    Google Scholar 

  • Jessberger EK, Bohsung J, Chakaveh S, Traxel K (1992) The volatile element enrichment of chondritic interplanetary dust particles. Earth Planet Sci Lett 112:91–99

    Google Scholar 

  • Klöck W, Stadermann FJ (1994) Mineralogical and chemical relationship of interplanetary dust particles, micrometeorites and meteorites. In: Zolensky ME, Wilson TL, Rietmeijer FJM, Flynn GJ (eds) Analysis of interplanetary Dust. Am Inst Physics, New York, pp 51–88

    Google Scholar 

  • Kornblum JJ (1969) Micrometeoroid interaction with the atmosphere. J Geophys Res 74:1893–1906

    Google Scholar 

  • Kurat G, Brandstätter F, Presper T, Koeberl G, Maurette M (1993) Micrometeorites. Russ Geol Geophys 34:132–147

    Google Scholar 

  • Kurat G, Koeberl C, Presper T, Brandstätter F, Maurette M (1994a) Petrology and geochemistry of Antarctic micrometeorites. Geochim Cosmochim Acta 58:3879–3904

    Google Scholar 

  • Kurat G, Hoppe P, Maurette M (1994b) Preliminary report on spinel-rich CAls in an Antarctic micrometeorite. Lunar Planet Sci Conf XXV:763–764

    Google Scholar 

  • Love SG, Brownlee DE (1991) Heating and thermal transformation of micrometeorites entering the Earth’s atmosphere. Icarus 89:26–43

    Google Scholar 

  • Love SG, Brownlee DE (1993) A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262:550–553

    Google Scholar 

  • Maurette M, Hammer C, Brownlee DE, Reeh N, Thomsen HH (1986) Placers of cosmic dust in the blue ice lakes of Greenland. Science 233:869–872

    Google Scholar 

  • Maurette M, Immel G, Hammer C, Harvey R, Kurat G, Taylor S (1994) Collection and curation of IDPs from the Greenland and Antarctic ice sheets. In: Zolensky ME, Wilson TL, Rietmeijer FJM, Flynn GJ (eds) Analysis of interplanetary dust. Am Inst Physics, New York, pp 277–289

    Google Scholar 

  • Maurette M, Olinger C, Christophe Michel-Levy M, Kurat G, Pourchet M, Brandstätter F, Bourot-Denise M (1991) A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 351:44–47

    Google Scholar 

  • McKeegan KD (1987) Ion microprobe measurements of H, C, O, and Si isotopic abundances in individual interplanetary dust particles. PhD Thesis, Washington Univ, St Louis, Missouri, pp 187

    Google Scholar 

  • Nier AO (1994) Helium and neon in interplanetary dust particles. In: Zolensky ME, Wilson TL, Rietmeijer FJM, Flynn GJ (eds) Analysis of interplanetary Dust. Am Inst Physics, New York, pp 115–126

    Google Scholar 

  • Nier AO, Schlutter DJ (1990) He and Ne isotopes in individual stratospheric particles-a further study. Lunar Planet Sci Conf XXI:883–884

    Google Scholar 

  • Perreau M, Engrand C, Maurette M, Kurat G, Presper T (1993) C/O atomic ratios in micrometer-sized crushed grains from Antarctic micrometeorites and two carbonaceous meteorites. Lunar Planet Sei Conf XXIV:1125–1126

    Google Scholar 

  • Presper T, Kurat G, Koeberl C, Palme H, Maurette M (1993) Elemental depletions in Antarctic micrometeorites and Arctic cosmic spherules: comparison and relationships. Lunar Planet Sci Conf XXIV:1177–1178

    Google Scholar 

  • Rietmeijer FJM (1994) A proposal for a petrological classification scheme of carbonaceous chondritic micrometeorites. In: Zolensky ME, Wilson TL, Rietmeijer FJM, Flynn GJ (eds) Analysis of interplanetary dust. Am Inst Physics, New York, pp 231–240

    Google Scholar 

  • Stadermann FJ (1991) Messung von Isotopen-und Elementhäufigkeiten in einzelnen interplanetaren Staubteilchen mittels Sekundärionen-Massenspektroskopie. PhD Thesis, University of Heidelberg, Germany, pp 97

    Google Scholar 

  • Taylor S, Brownlee DE (1991) Cosmic spherules in the geologic record. Meteoritics 26: 203–211

    Google Scholar 

  • Thomas KL, Keller LP, Blanford GE, McKay DS (1994) Quantitative analysis of carbon in anhydrous and hydrated interplanetary dust particles. In: Zolensky ME, Wilson TL, Rietmeijer FJM, Flynn GJ (eds) Analysis of interplanetary dust. Am Inst Physics, New York, pp 165–172

    Google Scholar 

  • Warren JL, Zolensky ME (1994) Collection and curation of interplanetary dust particles recovered from the stratosphere by NASA. In: Zolensky ME, Wilson TL, Rietmeijer FJM, Flynn GJ (eds) Analysis of interplanetary dust. Am Inst Physics, New York, pp 245–254

    Google Scholar 

  • Zolensky ME, Barrett R (1994) Olivine and pyroxene compositions of chondritic interplanetary dust particles. In: Zolensky ME, Wilson TL, Rietmeijer FJM, Flynn GJ (eds) Analysis of interplanetary dust. Am Inst Physics, New York, pp 105–114

    Google Scholar 

References

  • Chabrier G, Shatzman E (eds) (1993) The equation of state in astrophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gehrels T, Matthews MS (eds) (1984) Saturn. University of Arizona Press, Tempe

    Google Scholar 

  • Gudkova TV, Zharkov VN, Leontev W (1988a) Models of Jupiter and Saturn having a twolayer molecular envelope. Sol Syst Res 22:159

    Google Scholar 

  • Gudkova TV, Zharkov VN, Leontev W (1988b) Models of Uranus and Neptune with partially mixed envelopes. Sol Syst Res 22:16

    Google Scholar 

  • Hubbard WB (1994) Giant planets brown dwarfs, and low-mass star interiors. In: Chabrier G, Shatzman E (eds) The equation of state in astrophysics. Cambridge University Press, Cambridge, pp 443–462

    Google Scholar 

  • Kafatos MC, Harrington RS, Maran SP (eds) (1986) Astrophysics of brown dwarfs. Cambridge University Press, Cambridge

    Google Scholar 

  • Weaver HH, Danly L (eds) (1989) The formation and evolution of planetary systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Zharkov VN (1986) Interior structure of the Earth and planets. Harwood Academic Publ, Chur

    Google Scholar 

  • Zharkov VN, Kozenko AV (1990) On the role of Jupiter in the formation of giant planets. Sov Astron Lett 16:169

    Google Scholar 

References

  • Barsukov VL, Bazilevsky AT, Volkov VP, Zharkov VN (eds) (1992) Venus geology, geochemistry and geophysics. The University of Arizona Press, Tucson

    Google Scholar 

  • Basaltic volcanism study project (1981). Pergamon Press, New York

    Google Scholar 

  • Florensky KP, Bazilevsky AT, Burba GA et al. (1981) Essays of comparative planetology. Barsukow VL (ed) Nauka, Moscow

    Google Scholar 

  • Galimov EM (1995) Problem of the origin of the Moon. In: The main trends in geochemistry. The to 100th Anniversary of Academician AP Vinogradov, Nauka, Moscow, pp 8–43

    Google Scholar 

  • Hartmann WK, Phillips RJ, Taylor GJ (eds) (1986) Origin of the Moon. LPI, Houston

    Google Scholar 

  • Hood LL, Jones JH (1987) Geophysical constraints on lunar bulk composition and structure: a reassessment. J Geophys Res 92:E396–E410

    Google Scholar 

  • Kieffer HH; Jakosky BM, Snyder CW, Matthews MS (eds) (1992) Mars. The University of Arizona Press, Tucson

    Google Scholar 

  • Kuskov OL (1995) Constitution of the Moon: 3. Composition of the middle mantle form seismic data. Phys Earth Planet Inter 90:55–74

    Google Scholar 

  • Kuskov OL, Panferov AB (1993) Thermodynamic models for the structure of the Martian upper mantle. Geochem Int 30(8):132–143

    Google Scholar 

  • Nakamura Y (1983) Seismic velocity structure of the lunar mantle. J Geophys Res 88:677

    Google Scholar 

  • Neal CR, Taylor LA (1992) Petrogenesis of mare basalts: a record of lunar volcanism. Geochim Cosmochim Acta 56:2177–2212

    Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and Moon. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Saxena SK (ed) (1986) Chemistry and physics of terrestrial planets. Advances of physical geochemistry. Springer, sBerlin Heidelberg New York

    Google Scholar 

  • Taylor SR (1982) Planetary science: a lunar perspective. LPI, Houston

    Google Scholar 

  • Taylor SR (1987) The unique lunar composition and its bearing on the origin of the Moon. Geochim Cosmochim Acta 51:1297–1309

    Google Scholar 

References

  • Alexander CMO’D (1993) Presolar SiC in chondrites: how variable and how many sources. Geochim Cosmochim Acta 57:2869–2888

    Google Scholar 

  • Amari S, Lewis RS, Anders E (1994a) Interstellar grains in meteorites: III. Graphite and its noble gases. Geochim Cosmochim Acta 59:1411–1426

    Google Scholar 

  • Amari S, Zinner E, Lewis RS (1994b) C-, N-, O-, Si-, and Ti-isotopic ratios of low density graphite grains from Murchison indicate a supernova origin. Lunar Planet Sci 25: 2728

    Google Scholar 

  • Anders E (1988) Circumstellar material in meteorites, noble gases, carbon, and nitrogen. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar systm. University of Arizona Press, Tucson, pp 927–955

    Google Scholar 

  • Anders E, Zinner E (1993) Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite. Meteoritics 28:490–514

    Google Scholar 

  • Binzel RP, Xu S, Bus SJ, Skrutskie MF, Meyer M, Knezek P, Barker ES (1993) The asteroid-meteorite connection: the discovery of a main belt ordinary chondrite asteroid. Meteoritics 28:24

    Google Scholar 

  • Birk JL, Minster JF, Allegre CJ (1975) 87Rb-87Sr chronology of achondrites. Meteoritics 10:364–365

    Google Scholar 

  • Bonte Ph, Jehanno C, Maurette M, Brownlee DE (1987) Platinum metals and microstructure in magnetic deep sea cosmic sperules. Proc Lunar Planet Sei Conf 17:E641–E648

    Google Scholar 

  • Brilliant DR, Franchi IA, Arden JW, Pillinger CT (1992) An interstellar component in the lunar regolith. Meteoritics 27:206–207

    Google Scholar 

  • Brownlee DE, Bates BA, Wheelock MM (1984) Extraterrestrial platinum group nuggets in deep-sea sediments. Nature 309:693–695

    Google Scholar 

  • Burbine TH, Binzel RP (1995) Could G asteroids be the parent bodies of the CM chondrites? Meteoritic 30:494

    Google Scholar 

  • Cameron AGW (1993) Nucleosynthesis and star formation. In: Levy EH, Lunine J (eds) Protostars and planets III. University of Arizona Press, Tucson

    Google Scholar 

  • Cassidy WA, Kern CM (1993) Primordial mineral growth in a plasma. Meteoritics 28:335–336

    Google Scholar 

  • Church SE (1975) Radiogenic isotope research. Rev Geophys Space Phys 13:98–101

    Google Scholar 

  • Clayton DD (1986) Interstellar fossil 26Mg and its possible relationship to excess meteoritic 26Mg. Astrophys J 310:490–198

    Google Scholar 

  • Clayton RN (1993) Oxygen isotopes in meteorites. Ann Rev Earth Planet Sei 21:115–119

    Google Scholar 

  • Clayton RN, Grossman L, Mageda TK (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488

    Google Scholar 

  • Dodd RT (1986) Meteorites. Petrology and geochemistry. Moscow, Mir, 384 pp (in Russian)

    Google Scholar 

  • Dymek RF, Albee AL, Chodos AA, Wasserburg GJ (1976) Petrography of isotopically dated clasts in the Kapoeta howardite and petrologic constraints on the evolution of its parent body. Geochim Cosmochim Acta 40:1115–1130

    Google Scholar 

  • Farrington OS (1915) Meteorites, Published by the author, Chicago, Illinois

    Google Scholar 

  • Gao X, Nittler LR, Swan PD, Walter RM (1995) Presolar grains in Indarch. Meteoritics 30:508

    Google Scholar 

  • Goswami JN, Srinivasan G, Ulyanov AA (1994) Ion microprobe studies of Efremovka C Als: I. Magnesium isotope composition. Geochim Cosmochim Acta 58:431–447

    Google Scholar 

  • Grossman L (1980) Refractory inclusions in the Allende meteorite. Annu Rev Earth Planet Sci 8:559–608

    Google Scholar 

  • Heide F (1934) Kleine Meteoritenkunde. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Heide F, Wlotzka F (1995) Meteorites. Messengers from space. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ireland T (1990) Presolar isotopic and chemical signatures in hibonite-bearing refractory inclusions from the Murchison carbonaceous chondrite. Geochim Cosmochim Acta 54:3219–3237

    Google Scholar 

  • Jessberger EK, Standacher Th, Dominik B, Herzog GF (1977) Ar40-Ar39 dating of the Puebleto de Allende meteorite. Meteoritics 12:266–269

    Google Scholar 

  • Krinov EL (1955) The basis of meteoritika. Moscow, Gostechizdat, 392 pp (in Russian)

    Google Scholar 

  • Kurat G, Hoinkes G, Fredriksson K (1975) Zoned Ca-Al-rich chondrule in Bali: new evidence against the primordial condensation model. Earth Planet Sci Lett 26:140–144

    Google Scholar 

  • Lavruchina AK (1973) Differenciation of the chemical elements in protoplanetary nebula. Meteoritika 32:7–24 (in Russian)

    Google Scholar 

  • Levin BYu, Simonenko AN (1977) Unresolved problems in origin of meteorites. Meteoritika 36:3–22 (in Russian)

    Google Scholar 

  • MacPherson GD, Wark DA, Armstrong JT (1988) Primitive material surviving in chondrites: refractory inclusions. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. University of Arizona Press, Tucson, pp 746–807

    Google Scholar 

  • Mason B (1967) Extraterrestrial mineralogy. Am Mineral 52:307–325

    Google Scholar 

  • Mason B (1972) The mineralogy of meteorites. Meteoritics 7:309–326

    Google Scholar 

  • McSween HY (1987) Meteorites and their parent planets. Cambridge University Press, Cambridge

    Google Scholar 

  • Meyer BS, Waver TA, Woosley SE (1995) Isotope source table for a 25M supernova. Meteoritics 30:325–334

    Google Scholar 

  • Minster JF, Allegre CJ (1976) 87Rb-87Sr history of Norton County enstatite achondrite. Earth Planet Sci Lett 32:191–198

    Google Scholar 

  • Ott U (1993) Interstellar grains in meteorites. Nature 364:25–33

    Google Scholar 

  • Petaev MI (1988) List of meteorite minerals. Meteoritika 47:156–166 (in Russian)

    Google Scholar 

  • Schultz L, Signer P (1977) Noble gases in the St. Mesmin chondrite: implications to the irradiation history of a brecciated meyeorite. Earth Planet Sci Lett 36:363–371

    Google Scholar 

  • Schulze H, Bischoff A, Palme H, Spettel B, Dreibus G, Otto J (1994) Mineralogy and chemistry of Rumuruti: the first meteorite fall of the new R chondrite group. Meteoritics 29:275–286

    Google Scholar 

  • Sears DWG, Shaoiong H, Benoit PH (1995) Chondrule formation, metamorphism, brecciation, an important new primary chondrule group, and the classification of chondrules. Earth Planet Sci Lett 131:27–39

    Google Scholar 

  • Srinivasan G, Ulyanov AA, Goswami JN (1994) 41Ca in the early solar system. Astrophys J Lett 431:L67–L70

    Google Scholar 

  • Taylor S, Brownlee DE (1991) Cosmic spherules in the geologic record. Meteoritics 26:203–211

    Google Scholar 

  • Tshermak G (1885) Die mikroskopische Beschaffenheit der Meteoriten. Stuttgart. (Facsimile reprint, with English translation in Smithson Contrib Astrophys 1964, 4:239 p)

    Google Scholar 

  • Ulyanov AA (1991) The meteorite minerals. In: 14th Brown-Vernadsky Microsymposium on Comparative Planetology, Moscow, 20 pp

    Google Scholar 

  • Van Schmus WR, Wood JA (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim Cosmochim Acta 31:747–765

    Google Scholar 

  • Vdovykin GP (1967) Carbonaceous matter in meteorites. Moscow, Nauka, 269 pp (in Russian)

    Google Scholar 

  • Vinogradov AP (1971) High-temperature protoplanetary processes. Geohimiya 11:1283–1296 (in Russian)

    Google Scholar 

  • Wark DA, Lovering JF (1977) Marker events in the early evolution of the solar system: evidence from rims on Ca-Al-rich inclusions in carbonaceous chondrites. Proc 8th Lunar Sei Conf 1:95–112 Pergamon Press, Oxford

    Google Scholar 

  • Wasserburg GJ (1985) Short-lived nucli in the early solar system. In: Black DC, Matthews MS (eds) Protostar and planets II. University of Arizona Press, Tucson, pp 703–773

    Google Scholar 

  • Wasserburg GJ, Burnett DS (1978) The status of isotopic age determinations on iron and stone meteorites. Proc Symp Meteorite Research, Dordrecht, pp 467–479

    Google Scholar 

  • Wasson JT (1985) Meteorites. Their record of early solar system history. WH Freeman, New York

    Google Scholar 

  • Weisberg MK, Prinz M, Kojima H, Yanai K, Clayton RN, Mayeda TK (1991) The Carlisle Lakes-type chondrites: a new grouplet with high Δ18O and evidence for nebular oxidation. Geochim Cosmochim Acta 55:2657–2669

    Google Scholar 

  • Wood JA (1971) Meteorites and origin of the solar system. Moscow, Mir, 172 pp (in Russian)

    Google Scholar 

  • Wood JA (1988) Chondritic meteorites and the solar nebula. Annu Rev Earth Planet Sci 16:53–72

    Google Scholar 

  • Yaroshevsky AA, Ulyanov AA (1994) Catalogue of meteorite minerals. Meteor Conf 22: 91–92 (in Russian)

    Google Scholar 

  • Yavnel’ AA (1973) Classification of meteorites and its role in the problem of the origin of meteorites. Meteoritika 32:25–36 (in Russian)

    Google Scholar 

  • Yates PD, Arden JW, Wright IP, Pillinger CT, Hutchison R (1992) A search for pre-solar material within an acid-resistant residue of Greenland cryoconite. Meteoritics 27: 309–310

    Google Scholar 

  • Yudin IA, Kolomensky BD (1987) Mineralogy of meteorites. Sverdlovsk, Ural Sci Centre USSR Acad Sci, 200 pp (in Russian)

    Google Scholar 

  • Zinner E (1995) Astronomy by mass spectrometry: interstellar grains in meteorite. Meteoritics 29:555s

    Google Scholar 

  • Zinner E, Amari S, Ravaglio C, Gallino R, Busso M, Woosley S (1995) The isotopic composition of interstellar graphite from the Murchison meteorite: evidence for supernova mixing. Lunar Planet Sci 26:1561–1562

    Google Scholar 

References

  • Allen CC, Morris Rv Lauer HV Jr, McKay DS (1993) Microscopic iron metal on glass and minerals — a tool for studying regolith maturity. Icarus 104:291–300

    Google Scholar 

  • Crabb J, Schultz L (1981) cosmic ray exposure ages of ordinary chondrites and their significance for parent body stratigraphy. Geochim Cosmochim Acta 45:2151–2160

    Google Scholar 

  • Durrani SA, Bull RK (1987) Solid State nuclear track detection principles. Pergamon Press, Harwell, UK

    Google Scholar 

  • Fleischer RL (1981) Nuclear track production in solids. In: Progress in materials science. Chalmers Anniversary Volume. Pergamon Press, New York, pp 97–123

    Google Scholar 

  • Hartmann WK (1983) Moons and planets. Wadsworth Publishing, Belmont, California

    Google Scholar 

  • Housen KR, Wilkening LL (1982) Regoliths on small bodies in the solar system. Annu Rev Earth Planet Sci 10:355–376

    Google Scholar 

  • Kashkarov LL (1988) High-energy cosmic ray VH-nuclei in the early solar system. Izv Acad Nauk USSR Ser Phys 52:2321–2324

    Google Scholar 

  • Kashkarov LL (1990) Low-energy VH-nuclei cosmic ray tracks in meteorites. In: Int Worksh on solid state track detectors and their applications. Dubna, Russia, pp 87–91

    Google Scholar 

  • Kashkarov LL (1995) VH-nuclei cosmic-ray tracks in chondrites as indicators for radiationthermal history of the meteorite matter at the early stage of Solar system primary body formation. Radiat Measurements 25:311–314

    Google Scholar 

  • Kashkarov LL, Genaeva LI, Kalinia Gv Lavrukhina AK (1988) Irradiation effects for the ordinary chondrites in the early stage of the Solar system body formation. Meteoritika 47:113–122

    Google Scholar 

  • McSween HY Jr (1987) Meteroites and their parent planets. Cambridge University Press, New York

    Google Scholar 

  • Morris RV (1980) Origins and size distribution of metallic iron particles in the lunar regolith. Proc Lunar Planet Sci Conf 11th:1697–1712

    Google Scholar 

  • Perron C, Naury M (1986) Very heavy ion track etching in olivine. Nucl Tracks 11:73–80

    Google Scholar 

  • Price PB (1982) Applications of nuclear track-recording solids to high-energy phenomena. Philos Mag 45:331–346

    Google Scholar 

  • Wasson JT (1985) Meteroites, their record of early solar system history. WH Freeman, New York

    Google Scholar 

References

  • Agrinier P, Boyd SR, Martinez I, Scharer U, Javoy M, Deutsch A (1995) On the kinetics of CaO + CO2 ⇒ CaCO3 and CO2 released during impact processes. Ann Geophys 13 Suppl III C:738

    Google Scholar 

  • Ahrens TJ, Gafihey ES (1971) Dynamic compression of enstatite. J Geophys Res 76:5504–5514

    Google Scholar 

  • Allen CC, Gooding JL, Keil K (1982) Hydrothermally altered impact melt rock and breccia: contributions to the soil of Mars. J Geophys Res 87:10,083–10,101

    Google Scholar 

  • Ashworth JR, Schneider H (1985) Deformation and transformation in experimentally shock-loaded quartz. Phys Chem Min 11:241–249

    Google Scholar 

  • Barber DJ, Wenk HR (1979) Deformation twinning in calcite, dolomite, and other rhombo-hedral carbonates. Phys Chem Min 5:141–165

    Google Scholar 

  • Becker L, Bada JL, Winans RE, Hunt JE, Bunch TE, French BM (1994) Fullerenes in the 1.85 billion-year-old Sudbury Impact Structure. Science 265:642–645

    Google Scholar 

  • Beran A, Koeberl C (1996) Water in tektites and impact glasses by FTIR Spectrometry. Meteoritics Planet Sci 32:211–216

    Google Scholar 

  • Bischoff A, Stöffler D (1984) Chemical and structural changes induced by thermal annealing of shocked feldspar inclusions in impact melt rocks from Lappajärvi crater, Finland. J Geophys Res 89:B645–B656

    Google Scholar 

  • Blum JD, Papanastassiou DA, Koeberl C, Wasserburg GJ (1992) Neodymium and strontium isotopic study of Asutralasian tektites: new constraints on the provenance and age of target materials. Geochim Cosmochim Acta 56:483–492

    Google Scholar 

  • Bohor BF, Foord EE, Modreski PJ, Triplehorn DM (1984) Mineralogical evidence for an impact event at the Cretaceous-Tertiary boundary. Sience 224:867–869

    Google Scholar 

  • Bohor BF, Betterton WJ, Krogh TE (1993) Impact shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth Planet Sci Lett 119:419–424

    Google Scholar 

  • Boslough MB (1991) Shock metamorphism and chemistry and planetary geologic processes. Ann Rev Earth Planet Sci 19:101–130

    Google Scholar 

  • Bottomley RJ, Grieve RAF, York D, Masaitis VL (1997) The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388:365–368

    Google Scholar 

  • Brett R (1992) The Cretaceous-Tertiary extinction: a lethal mechanism involving anhydrite target rocks. Geochim Cosmochim Acta 56:3603–3606

    Google Scholar 

  • Bringemeier D (1994) Petrofabric examination of the main suevite of the Otting quarry, Nörd-linger Ries, Germany. Meteoritics 29:417–422

    Google Scholar 

  • Buchanan PC, Reimold WU (1996) Analysis of deformation lamellae in quartz grains from the Rooiberg felsite, Bushveld Complex, South Africa, and associated rocks. Lunar Planet Sci Conf XXVII: 175–176

    Google Scholar 

  • Carlisle DB, Braman DR (1991) Nonometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta. Nature 352:708–709

    Google Scholar 

  • Carstens H (1975) Thermal history of impact melt rocks in the Fennoscandian shield. Contrib Mineral Petrol 50:145–155

    Google Scholar 

  • Carter NL (1965) Basal quartz deformation lamellae, a criterion for recognition of impactites. Am J Sci 263:786–806

    Google Scholar 

  • Carter NL, Avé Lallemant HG (1970) High temperature flow of dunite and peridotite. Geol SocAm Bull 81:2181–2202

    Google Scholar 

  • Chen G, Tyburczy JA, Ahrens TJ (1994) Shock-induced devolatilization of calcium sulfate and implications for K-T extinctions. Earth Planet Sci Lett 128:615–628

    Google Scholar 

  • Chen M, Sharp TG, El Goresy A, Wopenka B, Xie X (1996) The majorite-pyrope + magnesio-wüstite assemblage: constraints on the history of shock veins in chondrites. Science 1271:1570–1573

    Google Scholar 

  • Cintala MJ, Grieve RAF (1994) The effects of differential scaling of impact melt and crater dimensions on lunar and terrestrial craters: some brief examples. In: Dressier BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geol Soc Am Spec Pap 293:51–59

    Google Scholar 

  • Clarke RS, Appleman DE, Ross DR (1981) An antarctic iron meteorite contains preterrestrial impact-produced diamond and Ionsdaleite. Nature 291:396–398

    Google Scholar 

  • Cordier P, Doukhan JC (1989) Water solubility in quartz and its influence on ductility. Eur J Mineral 1:221–237

    Google Scholar 

  • Cummings D (1964) Kink-bands: shock deformation of biotite resulting from a nuclear ex-plosion. Science 148:950–952

    Google Scholar 

  • Dachille F, Gigl P, Simons PY (1968) Experimental and analytical studies of crystalline dama-ge useful for the recognition if impact structures. In: French BM, Short NM (eds) shock metamorphism of natural materials. Mono Book Corp, Baltimore, Maryland, pp 555–570

    Google Scholar 

  • DeCarli PS, Jamieson JC (1961) Formation of diamond by explosive shock. Science 133:1821–1822

    Google Scholar 

  • Deribas AA, Dobretsov NL, Kudinov VM, Zyuzin NI (1966) Shock compression of SiO2 powders. Dokl Akad Nauk USSR 168:127–130

    Google Scholar 

  • Deutsch A, Scharer U (1994) Dating terrestrial impact events (invited review). Meteoritics 29: 301–322

    Google Scholar 

  • Deutsch A, Buhl D, Langenhorst F (1992) On the significance of crater ages — new ages for Dellen (Sweden) and Araguainha (Brazil). Tectonophysics 216:205–218

    Google Scholar 

  • Deutsch A, Grieve RAF, Avermann M, Bishoff L, Brockmeyer P, Buhl D, Lakomy R, MüllerMohr V Ostermann M, Stöffler D (1995) The Sudbury structure (Ontario, Canada): a tectonically deformed multi-ring impact basin. Geol Rundsch 84:697-709

    Google Scholar 

  • Deutsch A, Ostermann M, Masaitis VL (1997) Geochemistry and Nd-Sr isotope signature of tektite-like objects (Urengoites, South-Ural glass). Meteoritics Planet Sci 32:679–686

    Google Scholar 

  • Dickin AP, Artan MA, Crocket JH (1996) Isotopic evidence for distinct crustal sources of North and South Range ores, Sudbury Igneous Complex. Geochim Cosmochim Acta 60:1605–1613

    Google Scholar 

  • El Goresy A, Fechtig H, Ottermann J (1968) The opaque minerals in impactite glasses. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp, Baltimore, Maryland, pp 531–553

    Google Scholar 

  • Elston WE (1992) Does the Bushveld-Vredefort system (South Africa) record the largest known terrestrial impact catastrophe? Int Conf on Large meteorite impacts and planetary evolution. Sudbury LPI Contrib No 790:23–24

    Google Scholar 

  • Evans NJ, Gregoire DC, Grieve RAF, Goodfellow WD, Veizer J (1993) Use of platinum-group elements for impactor identification: terrestrial impact craters and Cretaceous-Tertiary boundary. Geochim Cosmochim Acta 57:3737–3748

    Google Scholar 

  • Feldman VI (1994) The conditions of shock metamorphism. In: Dressier BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geol Soc Am Spec Pap 293:121–132

    Google Scholar 

  • Floran RJ, Grieve RAF, Phinney WC, Warner JL, Simonds CH, Blanchard DP, Dence MR (1978) Manicouagan impact melt Quebec 1 stratigraphy petrology and chemistry. J Geophys Res 83:2737–2759

    Google Scholar 

  • Fregerslev S, Carstens H (1976) FeNi metal in impact melt rocks of Lake Lappajärvi, Finland, Contrib Mineral Petrol 55:255–263

    Google Scholar 

  • French BM, Short NM (1968) Shock metamorphism of natural materials. Mono Book Corp, Baltimore, Maryland, 644 pp

    Google Scholar 

  • French BM (1990) Absence of shock-metamorphic effects in the Bushveld Complex, South Africa: results of an intensive search. Tectonophysics 171:287–301

    Google Scholar 

  • Frondel C, Marvin UB (1967) Lonsdaleite, a hexagonal polymorph of diamond. Nature 214:587

    Google Scholar 

  • Gersonde R, Kyte FT, Bleil U, Diekmann B, Flores JA, Gohl K, Grahl G, Hagen R, Kuhn G, Sierro FJ, Voelker D, Abelmann A, Bostwick JA (1997) Geological record and reconstruc-tion of the late Pliocere impact of the Eltanin asteroid in the Southern Ocean. Nature 390:357–363

    Google Scholar 

  • Gilmour I, Russell SS, Arden JW, Lee MR, Franchi IA, Pillinger CT (1992) Terrestrial carbon and nitrogen isotopic ratios from Cretaceous-Tertiary boundary nanodiamonds. Science 258:1624–1626

    Google Scholar 

  • Goltrant O, Cordier P, Doukhan JC (1991) Planar deformation features in shocked quartz: a transmission electron microscopy investigation. Earth Planet Sci Lett 106:103–115

    Google Scholar 

  • Goltrant O, Leroux H, Doukhan JC, Cordier P (1992) Formation mechanism of planar deformation features in naturally shocked quartz. Phys Earth Planet Int 74:219–240

    Google Scholar 

  • Gostin VA, Keays RR, Wallace MW (1989) Iridium anomaly from the Acraman impact ejecta horizon: impacts can produce sedimentary iridium peaks. Nature 340:542–544

    Google Scholar 

  • Gratz AJ, Nellis WJ, Christie JM, Brocious W, Swegle J, Cordier P (1992) Shock metamorphism of quartz with initial temperatures — 170 to +1000 °C. Phys Chem Min 19:267–288

    Google Scholar 

  • Graup G (1978) Das Kristallin im Nördlinger Ries. Petrographische Zusammensetzung und Auswurfsmechanismus der kristallinen Trümmermassen, Struktur des kristallinen Untergrundes und Beziehungen zum Moldanubikum. Enke, Stuttgart, 190 pp

    Google Scholar 

  • Grieve RAF (1978) The melt rocks at Brent crater, Ontario, Canada. Proc Lunar Planet Sci Conf 9th:2579–2608

    Google Scholar 

  • Grieve RAF (1987) Terrestrial impact structures. Annu Rev Earth Planet Sci 15:245–270

    Google Scholar 

  • Grieve RAF (1991) Terrestrial impact: the record in the rocks. Meteoritics 26:175–194

    Google Scholar 

  • Grieve RAF (1997) Extraterrestrial impact events: the record in the rocks and the stratigraphic column. Palaeogeo. Paleoclimat. Palaeoecol. 132, 5–23

    Google Scholar 

  • Grieve RAF, Cintala MJ (1992) An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 27:526–538

    Google Scholar 

  • Grieve RAF, Masaitis VL (1994) The economic potential of terrestrial impact craters. Int Geol Rev 36:105–151

    Google Scholar 

  • Grieve RAF, Shoemaker EM (1994) The record of past impacts on Earth. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 417–462

    Google Scholar 

  • Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteoritics Planet Sci 31:6–35

    Google Scholar 

  • Gudlaugsson ST (1993) Large impact crater in the Barents Sea. Geology 21:291–294

    Google Scholar 

  • Gurov EP, Gurova EP (1991) Geological structure and composition of rocks in impact craters. Nauka Press, Kiev (in Russian)

    Google Scholar 

  • Gurov EP, Melnychuk EV, Metalidi SV, Ryabenko VA, Gurova EP (1985) The characteristics of the geological structure of the eroded astrobleme in the western part of the Ukrainian Shield. Dopovidi Akad Nauk Ukrainskoi Radyanskoi Sotsialisychnoi Republiky, Seriya B:8–11 (in Russian)

    Google Scholar 

  • Hannemann RE, Strong HM, Bundy FP (1967) Hexagonal diamonds in meteorites: implications. Science 155:995–997

    Google Scholar 

  • Hanss RE, Montaque BR, Davis MK, Galindo C, Hörz F (1978) X-ray diffractometer studies of shocked materials, Proc Lunar Planet Sci Conf IX:2773–2787

    Google Scholar 

  • Hart SR, Kinloch ED (1989) Osmium isotope systematics in Witwatersrand and Bushveld ore deposits. Econ Geol 84:1651–1655

    Google Scholar 

  • Horz F (1968) Statistical measurements of deformation structures and refractive indices in experimentally shock-loaded quartz. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp, Baltimore, Maryland, pp 243–254

    Google Scholar 

  • Hörz F, Quaide WL (1972) Debye-Scherrer investigations of experimentally shocked silicates. Moon 6:45–82

    Google Scholar 

  • Hörz F, Gall H, Hüttner R, Oberbeck VR (1977) Shallow drilling in the Bunte Breccia impact deposits, Ries Crater, Germany. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 425–448

    Google Scholar 

  • Hörz F, See TH, Murali AV, Blauchard DP (1989) Heterogeneous dissemination of projectile materials in the impact melts from Wabar Crater, Saudi Arabia. Proc Lunar Sci Conf IXX:697–709

    Google Scholar 

  • Ivanov BA (1995) Geomechanical models of impact cratering: Puchezh-Katunki structure. In: Dressier BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geol Soc Am Sec Pap 293:81–91

    Google Scholar 

  • Jahn BM, Floran RJ, Simonds CH (1978) Rb-Sr isochron age of the Manicouagan melt sheet Quebec, Canada. J Geophys Res 83:2799–2803

    Google Scholar 

  • Jakubith M, Hornemann U (1981) Majorite formation from enstatite by experimental shock-loading. Phys Earth Planet Int 27:95–99

    Google Scholar 

  • Joreau P, Reimold WU, Robb LJ, Doukhan JC (1997) A TEM study of deformed quartz grains from volcaniclastic sediments associated with the Bushveld Complex, South Africa. Eur J Mineral 9:393–401

    Google Scholar 

  • Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023-Ga age for the Vredefort impact event and a first report of shock-metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144:369–387

    Google Scholar 

  • Kargel JS, Coffin P, Kraft M, Lewis JS, Moore C, Roddy D, Shoemaker EM, Wittke JH (1996) Systematic collection and analysis of meteoritic materials from Meteor Crater, Arizona. Lunar Planet Sci Conf XXVII:645–646

    Google Scholar 

  • Kieffer SW, Phakey PP, Christie JM (1976) Shock processes in porous quarzite: transmission electron microscope observations and theory. Contrib Mineral Petrol 59:41–93

    Google Scholar 

  • Kirby SH, Christie JM (1977) Mechanical twinning in diopside Ca(Mg,Fe)Si2O6: structural mechanism and associated crystal defects. Phys Chem Min 1:137–163

    Google Scholar 

  • Kitamura M, Goto T, Syono Y (1977) Intergrowth textures of diaplectic glass and crystal in shock-loaded P-anorthite. Contr Mineral Petrol 61:299–304

    Google Scholar 

  • Kleinmann B (1969) The breakdown of zircon observed in the Libyan desert glass as evidence of its impact origin. Earth Planet Sci Lett 5:497–501

    Google Scholar 

  • Koeberl C (1990) The geochemistry of tektites: an overview. Tectonophysics 171:405–422

    Google Scholar 

  • Koeberl C, Reimold WU (1995) Early Archaean spherule beds in the Barberton Mountain Land, South Africa: no evidence for impact origin. Precambrian Res 74:1–33

    Google Scholar 

  • Koeberl C, Shirey SB (1996) Re-Os systematics as a diagnostic tool for the study of impact craters and distal ejecta. Palaeogeo. Paleoclimat. Palaeoecol. 132, 25–46

    Google Scholar 

  • Kyte FT, Bohor BF (1995) Nickel-rich magnesiowustite in Cretaceous/Tertiary boundary spherules crystallized from ultramafic, refractory silicate liquids. Geochim Cosmochim Acta 59:4967–4974

    Google Scholar 

  • Kyte FT, Bostwick JA (1995) Magnesioferrite spinel in Cretaceous/Tertiary boundary sedi-ments of the Pacific basin: remnants of hot, early ejecta from the Chicxulub impact? Earth Planet Sci Lett 132:113–127

    Google Scholar 

  • Lambert P, Mackinnon IDR (1984) Micas in experimentally shocked gneiss. J Geophys Res 89:B685–B699

    Google Scholar 

  • Lange MA, Lambert P, Ahrens TJ 81985) Shock effects on hydrous minerals and implications for carbonaceous meteorites. Geochim Cosmochim Acta 49:1715–1726

    Google Scholar 

  • Langenhorst F (1989) Experimentally shocked plagioclase: changes of refractive indices and optic axial angle in the 10-30 GPa range. Meteoritics 24:291

    Google Scholar 

  • Langenhorst F (1994) Shock experiments on α-and β-quartz: II. X-ray investigations. Earth Planet Sci Lett 128:683–698

    Google Scholar 

  • Langenhorst F (1996) Characteristics of shocked quartz in late Eocene impact ejecta from Massignano (Ancona, Italy): Clues to shock conditions and source crater. Geology 24: 487–490

    Google Scholar 

  • Langenhorst F (1997) Impaktdiamanten als Zeugen des Bombardements aus dem All. Humboldt-Spektrum, Humboldt-Universität zu Berlin, Heft 2/97, 32–37

    Google Scholar 

  • Langenhorst F, Deutsch A (1994) Shock experiments on preheated α-and β-quartz: I. Optical and density data. Earth Planet Sci Lett 125:407–420

    Google Scholar 

  • Langenhorst F, Joreau P, Doukhan JC (1995) Thermal and shock metamorphism of the Tenham meteorite: a TEM examination. Geochim Cosmochim Acta 59:1835–1845

    Google Scholar 

  • Leroux H, Doukhan JC, Langenhorst F (1994a) Microstructural defects in experimentally shocked diopside: a TEM characterization. Phys Chem Min 20:521–530

    Google Scholar 

  • Leroux H, Reimold WU, Doukhan JC (1994b) A TEM investigation of shock metamorphism in quartz from the Vredefort dome, South Africa. Tectonophysics 230:223–239

    Google Scholar 

  • Lipschutz ME (1964) Origin of diamonds in the ureilites. Science 143:1431–1434

    Google Scholar 

  • Madon M, Poirer JP (1983) Transmission electron microscope observation of α, β and (Mg,Fe)2SiO4 in shocked meteorites: planar defects and polymorphic transitions. Phys Earth Planet Int 33:31–44

    Google Scholar 

  • Manghnani MH, Syono Y (1987) High-pressure research in mineral physics. Geophysical Monograph 39, American Geophysical Union

    Google Scholar 

  • Margolis S, Claeys Ph, Kyte FT (1991) Microtektites, microcrystites and spinels from a late Pliocene asteroid impact in the Southern Ocean. Science 251:1594–1597

    Google Scholar 

  • Martinez I, Scharer U, Guyot F (1993) Impact-induced phase transformations at 50-60 GPa in continental crust: an EPMA and ATEM study. Earth Planet Sci Lett 119:207–223

    Google Scholar 

  • Martinez I, Agrinier P, Scharer U, Javoy M (1994) CO2 production by impact into carbonates? A SEM-ATEM and stable isotope (18O13C) study of carbonates from the Haughton impact crater. Earth Planet Sci Lett 121:559–574

    Google Scholar 

  • Martinez I, Deutsch A, Schärer U, Ildefonse Ph, Guyot F, Agrinier P (1995) Shock recovery experiments on dolomite and thermodynamical modeling of impact-induced decarbonation. J Geophys Res 100, B8:15,465–15,476

    Google Scholar 

  • Martini JEJ (1991) The nature, distribution and genesis of the coesite and stishovite associated with the pseudotachylite of the Vredefort Dome, South Africa. Earth Planet Sci Lett 103:285–300

    Google Scholar 

  • Masaitis VL (1993) Origin of the Sudbury Structure from the points of new petrographic mineralogical and geochemical data. Trans All-Russian Mineral Soc 122:1–17 (in Russian)

    Google Scholar 

  • Masaitis VL (1994) Impactites from the Popigai crater. In: Dressier BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geol Soc Am Spec Pap 293:153–162

    Google Scholar 

  • Masaitis VL, Mashchak MS (1996) Recrystallization and blastesis of shock-metamorphozed rocks in impact structures. Proc Russ Mineral Soc CXXV:1–18

    Google Scholar 

  • Masaitis VL, Futergendler DI, Gnevushev MA (1972) Diamonds in impactites of the Popi-gay meteorite crater. Zap Vsesoyuznogo Mineralogicheskogo Obshchestva 101:108–112

    Google Scholar 

  • Masaitis VL, Mikhailov MV, Selivanovskaya TV (1975) Popigai meteorite crater. Nauka, Moscow, 124 pp

    Google Scholar 

  • Masaitis VL, Danilin AI, Mashchak MS, Raikhlin AI, Selivanovskaya TV, Shadenkov EM (1980) The geology of astroblemes. Nedra Press, St Petersburg, USSR, Russia, 231 pp (in Russian)

    Google Scholar 

  • Masaitis VL, Mashchak MS, Naumol My Orlovo JV, Selivanovskaya TV (1995) Puchezh-Katunki impact crater: main features of geological structure. Doklady Ac Si 342:358–360

    Google Scholar 

  • McLaren AC, Phakey PP (1966) Electron microscope study of Brazil twin boundaries in amethyst quartz. Phys Stat Sol 13:413–422

    Google Scholar 

  • Melosh HJ (1989) Impact cratering. A geological process. Oxford University Press, New York, 245 pp

    Google Scholar 

  • Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350:494–497

    Google Scholar 

  • Milton DJ, De Carli P (1963) Maskelynite: formation by explosive shock. Science 140:670–671

    Google Scholar 

  • Morgan J, Warner M and the Chicxulub working group (1997) Size and morphology of the Chicxulub impact crater. Nature 390, 472–476

    Google Scholar 

  • Mori H (1994) Shock-induced phase transformations of the Earth and planetary materials. J Mineral Soc Jpn 23:171–178

    Google Scholar 

  • Möller WF (1993) Thermal and deformation history of the Shergotty meteorite deduced from clinopyroxene microstrucrure. Geochim Cosmochim Acta 57:4311–4322

    Google Scholar 

  • Möller-Mohr V (1992) Breccias in the basement of a deeply erode impact structure Sudbury Canada. Tectonophysics 216:219–226

    Google Scholar 

  • Newsom HE, Graup G, Sewards T, Keil K (1986) Fluidization and hydrothermal alteration of the suevite deposit at the Ries crater, West Germany, and implications for Mars. J Geophys Res 91:E239–E251

    Google Scholar 

  • Nishiizumi K, Kohl CP, Shoemaker EM, Arnold JR, Klein J, Fink D, Middleton R (1991) In situ 10Be-26Al exposure ages at meteor Crater, Arizona. Geochim Cosmochim Acta 55:2699–2703

    Google Scholar 

  • Ostermann M, Deutsch A, Schärer U (1996) Impact melt dikes in the Sudbury multi-ring basin (Canada): Implications from U-Pb geochronology on the Foy Offset. Meteor Planet Sci 31, 494–501

    Google Scholar 

  • Ostertag R (1983) Shock experiments on feldspar crystals. J Geophys Res 88:B364–B376

    Google Scholar 

  • Palme H, Goebel E, Grieve RAF (1979) The distribution of volatile and siderophile elements in the impact melt of East Clearwater (Quebec) Proc Lunar Planet Sci Conf 10th:2465–2495

    Google Scholar 

  • Pevzner LA, Masaitis VL (1996) (in Russian)

    Google Scholar 

  • Phillips F, Zreda MG, Smith SS, Elmore D, Kubik PW, Dorn RI, Roddy DJ (1991) Age and geomorphic history of Meteor Crater Arizona from cosmogenic Cl and C in rock varnish. Geochim Cosmochim Acta 55:2695–2698

    Google Scholar 

  • Pilkington M, Grieve RAF (1992) The geophysical signature of terrestrial impact craters. Rev Geophys 30:161–181

    Google Scholar 

  • Plado J, Pesonen LJ, Elo S, Puura V, Suuroja K (1996) Geophysical research on the Kärdla impact structure, Hiiumaa Island, Estonia. Meteor Planet Sci 31:289–298

    Google Scholar 

  • Poag CW (1996) Structural outer rim of Chesapeake Bay impact crater: seismic and bore hole evidence. Meteor Planet Sci 31:218–226

    Google Scholar 

  • Pohl J, Stöffler D, Gall H, Ernstson K (1977) The Ries impact crater. In: Roddy DJ, Pepin RO, Merill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 343–404

    Google Scholar 

  • Pope KO, Baines KH, Ocampo AC, Ivanov BA (1994) Impact winter and the Cretaceous/Ter-tiary extinctions: results of a Chicxulub asteroid impact model. Earth Planet Sci Lett 128:719–725

    Google Scholar 

  • Pope KO, Ocampo AC, Fisher AG, Morrison J, Sharp Z (1996) Carbonate condensates in the Chicxulub ejecta depositis from Belize. Lunar Planet Sci Conf XXVII:1045–1046

    Google Scholar 

  • Putnis A, Price GD (1979) High pressure (Mg,Fe)2SiO4 phases in the Tenham chondritic meteorite. Nature 280:217–218

    Google Scholar 

  • Rasmussen KL, Clausen HB, Kallemeyn GW (1995) No iridium anomaly after the 1908 Tunguska impact evidence from a Greenland ice core. Meteoritics 30:634–638

    Google Scholar 

  • Reimold WU, Koeberl C (1994) About the impact origin of the Vredefort structure. Geobull Geol Soc South Africa 37:3–7

    Google Scholar 

  • Robertson PB, Grieve RAF (1977) Shock attenuation at terrestrial impact structures. In: Roddy DJ, Pepin RO, Merill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 687–702

    Google Scholar 

  • Robertson PB, Mason GD (1975) Shatter cones from Haughton dome, Devon Island, Canada. Nature 255:393–394

    Google Scholar 

  • Robin E, Bonte Ph, Froget L, Jehanno C, Rocchia R (1992) Formation of spinels in cosmic objects during atmospheric entry: a clue to the Cretaceous-Tertiary boundary event. Earth Planet Sci Lett 108:181–190

    Google Scholar 

  • Roddy DJ, Boyce JM, Colton GW, Dial AL Jr (1975) Meteor crater, Arizona, rim drilling with thickness, structural uplift, diameter, depth, volume, and mass-balance calculations. Proc Lunar Sci Conf 6th:2621–2644

    Google Scholar 

  • Roest WR, Pilkington M (1994) Restoring post-impact deformation at Sudbury: a circular argument. Geophys Res Lett 21:959–962

    Google Scholar 

  • Rost R, Dolgov YA, Vishnevskiy SA (1978) Gases in inclusions of impact glass in the Ries crater, West Germany, and finds of high-pressure carbon polymorphs. Dokl Acad Nauk USSR 241:165–168 (in Russian)

    Google Scholar 

  • Schmitz B, Jeppsson L, Ekvall J (1994) A search for shocked quartz grains and impact ejecta in early Silurian sediments on Gotland. Sweden. Geol Mag 131:361–367

    Google Scholar 

  • Schneider H (1972) Shock-induced mechanical deformations in biotites from crystalline rocks of the Ries crater (Southern Germany). Contrib Mineral Petrol 37:75–85

    Google Scholar 

  • Schneider H, Vasudevan R, Hornemann U (1984) Deformation of experimentally shock-loaded quartz powders: X-ray line broadening studies. Phys Chem Min 10:142–1347

    Google Scholar 

  • Schrand Ch, Deutsch A (1996) Phase transformations in pre-heated granitic rock samples in shock recovery experiments at 85 GPa: formation of shock-generated crystals. Meteor Planet Sci 31, A124–A125

    Google Scholar 

  • Sharp TG, Lingemann CM, Dupas C, Stöffler D (1997) Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science 277: 352–355

    Google Scholar 

  • Simonson BE, Davies D, Wallace M, Reeves S (1996) PGEs and quartz grains in a resedi-mented Late Archean impact horizon in the Hamersley Group of Western Australia. Lunar Planet Sci Conf XXVII: 1203–1204

    Google Scholar 

  • Skrotzki W (1994) Defect structure and deformation mechanisms in naturally deformed augite and enstatite. Tectonophysics 229:43–68

    Google Scholar 

  • Smit J (1994) Extinctions at the Cretaceous-Tertiary boundary. The link to the Chicxulub impact. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 859–878

    Google Scholar 

  • Smit J, Kyte FT (1984) Siderophile-rich magnetic spheroids from the Cretaceous-Tertiary boundary in Umbria, Italy. Nature 310:403–405

    Google Scholar 

  • Smith JV, Dawson JB (1985) Carbonado: diamond aggregates from early impacts of crustal rocks? Geology 13:342–343

    Google Scholar 

  • Spray JG, Thompson LM (1995) Friction melt distribution in a multi-ring impact basin. Nature 373:130–132

    Google Scholar 

  • Stöffler D (1971) Coesite and stishovite: Identification and formation conditions in shock-metamorphosed rocks. J Geophys Res 76:5474–5488

    Google Scholar 

  • Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes: I. Behavior of minerals under shock compression. Fortschr Mineral 49:50–113

    Google Scholar 

  • Stöffler D, Grieve RAF (1994) Classification and nomenclature of impact metamorphic rocks: a proposal to the IUGS subcommission on the systematics of metamorphic rocks. Lunar Planet Sci Conf XXV:1347–1348

    Google Scholar 

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155–181

    Google Scholar 

  • Stöffler D, Keil K, Scott ERD (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55:3845–3867

    Google Scholar 

  • Therriault AM, Reid AM, Reimold WU (1993) Original size of the Vredefort Structure, South Africa. Lunar Planet Sci Conf XXIV:1419–1420

    Google Scholar 

  • Thompson LM, Spray JG (1994) Pseudotachylytic rock distribution and genesis within the Sudbury impact structure. In: Dressier BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geol Soc Am Sec Pap 293:275–287

    Google Scholar 

  • Tomioka N, Fujino K (1997) Natural (Mg, Fe)SiO3-ilmenite and-perovskite in the Tenham meteorite. Science 277, 1084–1086

    Google Scholar 

  • Trueb LF (1971) Microstructural study of diamonds synthesized under conditions of high temperature and moderate explosive shock pressure. J Appl Phys 42:503–510

    Google Scholar 

  • Tschermak G (1872) Die Meteoriten von Shergotty and Goalpur. Sitzungsber Akad Wiss Wien Math-Naturwiss Kl 65 Teil 1:122–145

    Google Scholar 

  • Turner FJ (1964) Analysis of kinks in micas of an Innsbruck mica schist. N Jb Miner Mh 9:51–83

    Google Scholar 

  • Valter AA, Yeremenko GK, Kwasnitsa VN, Polkanov YA (1992) Shock-metamorphosed carbon minerals. Nauka Press, Kiev (in Russian)

    Google Scholar 

  • von Gruenewaldt G, Harmer RE (1992) Tectonic setting of proterozoic layered intrusions with special reference to the Bushveld Complex. Proterozoic crustal evolution (ed KC Condie). Developments in Precambrian geology 10: Chapter 5. Elsevier, Amsterdam, pp 181–213

    Google Scholar 

  • von Engelhardt W (1972) Shock-produced rock glasses from the Ries Crater. Contrib Mineral Petrol 36:265–292

    Google Scholar 

  • von Engelhardt W, Bertsch W (1969) Shock-induced planar deformation structures in quartz from the Ries crater, Germany. Contrib Mineral Petrol 20:203–234

    Google Scholar 

  • von Engelhardt W, Arndt J, Stoffler D, Müller WF, Jeziorkowski H, Gubser RA (1967) Diaplektische Gläser in den Breccien des Ries von Nördlingen als Anzeichen für Stor wellenmetamorphose. Contrib Mineral Petrol 15:91–100

    Google Scholar 

  • von Engelhardt W, Arndt J, Fecker B, Pankau HG (1995) Suevite breccia from the Ries crater, Germany: origin, cooling history and devitrification of impact glass. Meteroitics 30:279–293

    Google Scholar 

  • White JC (1993) Shock-induced melting and silica polymorph formation, Vredefort structure, South Africa. In: Boland JA, FitzGerald JD (eds) Defects and processes in solid state: geoscience applications. Elsevier, New York, pp 69–84

    Google Scholar 

References

  • Alvarez LW, Alvarez W, Asaro F, Michel H (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Google Scholar 

  • Glen W (ed) (1994) the mass extinction debates: how science works in a crisis. Stanford University Press, Stanford, 370 pp

    Google Scholar 

  • Sharpton VL, Ward PD (eds) (1990) Global catastrophes in Earth history. Geol Soc Am Spec Pap 247:631

    Google Scholar 

  • Silver LT, Shultz PH (eds) (1982) Geological implications of impacts of large asteroids and comets on the Earth. Geol Soc Am Spec Pap 190:528

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marfunin, A.S. et al. (1998). Mineral Matter in Space. In: Marfunin, A.S. (eds) Advanced Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18154-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18154-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62108-6

  • Online ISBN: 978-3-642-18154-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics