Skip to main content

Adenovirus-mediated regulatable Expression of human Factor IX in vitro and in vivo

  • Conference paper
  • 101 Accesses

Abstract

The ability to modulate transgene expression in vivo not only will mimic the expression of endogenous genes but is also important for therapeutic and safety reasons in gene therapy protocols. Regulated gene expression systems should be able to induce long-term expression and allow for exogenous control of expression. For this aim, the high gene transfer capacity of adenoviral vectors (Ad) and the high inducibility of the tetracycline-regulatable systems were combined in this study to develop a tetracycline-regulatable Ad vector for expression of human factor IX (hFIX). In vitro studies showed a dose dependent and high induction potential of the hFIX expression system resulting in 65-fold increase in hFIX expression after induction with doxycycline. The use of a liver-specific promoter has been shown to induce a relatively high expression of hFIX compared to CMV promoter in HepG2. In contrast to this, the liver specific promoter showed no hFIX expression when tested in three other non-hepatic human cell lines. The expression of hFIX can either be maintained by continuous induction of doxycycline or up- and down-regulated by mutual presence and absence of doxycycline. When mice were injected with Ad vector for hFIX and induced by doxycycline they showed a therapeutic level of circulating hFIX for one week. These results report on the development of a regulated Ad vectors for the expression of hFIX and demonstrate that FIX gene expression is regulatable in vitro and in vivo. These vectors should be useful not only for gene therapy protocols in haemophilia B but also for diverse applications in gene therapy studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gossan M, Bujard H. Tight control of gene expression in mammalian cells by tetracyclineresponsive promoters. Proc Natl Acad Sci USA. 1992;89:5547–5551

    Article  Google Scholar 

  2. Arruda VR, Hagstrom JN, Deitch J, et al. Posttranslational modifications of recombinant myotube-synthesised human factor IX. Blood. 2001;97:130–138

    Article  PubMed  CAS  Google Scholar 

  3. Bohl D, Heard JM. Modulation of erythropoietin delivery from engineered muscles in mice. Hum Gene Ther. 1997;8:195–204

    Article  PubMed  CAS  Google Scholar 

  4. Bohl D, Naffakh N, Heard JM. Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nature Med. 1997;3:299–305

    Article  PubMed  CAS  Google Scholar 

  5. Bohl D, Salvetti A, Moullier P, Heard JM. Control of erythropoietin delivery in mice after intramuscular injection of adeno-associated vector. Blood. 1998;92:1512–1517

    PubMed  CAS  Google Scholar 

  6. Corti O, Sabate O, Horellou P, et al. A single adenovirus vector mediates doxycycline controlled expression of tyrosine hydroxylase in brain grafts of human neural progenitors. Nat Biotechnol. 1999;17:349–354

    Article  PubMed  CAS  Google Scholar 

  7. Dahlbäck B. Blood coagulation. Lancet. 2000;355:1627–1632

    Article  PubMed  Google Scholar 

  8. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM. Cellular and humoral immune response to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA. 1995;92:1401–1405

    Article  PubMed  CAS  Google Scholar 

  9. Fechner H, Haack A, Wang H, et al. Expression of Coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barrier. Gene Ther. 1999;6:1520–535

    Article  PubMed  CAS  Google Scholar 

  10. Fields PA, Armstrong E, Hagstrom JN, et al. Intravenous administration of an El/E3-deleted adenoviral vector induces tolerance to factor IX in C57BL/6 mice. Gene Ther. 2001;8:354–361

    Article  PubMed  CAS  Google Scholar 

  11. Gossan M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. Transcriptional activation by tetracycline in mammalian cells. Science. 1995;268:1766–1769

    Article  Google Scholar 

  12. Guo ZS, Wang L-H, Eisensmith RC, Woo SLC. Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther. 1996;3:802–810

    PubMed  CAS  Google Scholar 

  13. Hafenrichter DG, Wu X, Rettinger SD, Kennedy SC, Flye MW, Ponder KP. Evaluation of liver-specific promoters from retroviral vectors after in vivo transduction of hepatocytes. Blood. 1994;84:3394–3404

    PubMed  CAS  Google Scholar 

  14. Hagstrom JN, Couto LB, Scallan C, et al. Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter. Blood. 2000;95:2536–2542

    PubMed  CAS  Google Scholar 

  15. Harvey E-G, Hacket NR, El-Sawy T, et al. Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administered to different organs. J Virol. 1999;73:6729–6742

    PubMed  CAS  Google Scholar 

  16. Herzog RW, Hagstrom JM, Kung S-H, et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA. 1997;94:5804–5809

    Article  PubMed  CAS  Google Scholar 

  17. Herzog RW, Yang EY, Couto LB, et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nature Med. 1999;5:56–63

    Article  PubMed  CAS  Google Scholar 

  18. Hu SX, Ji W, Zhou Y, Logothetis C, Xu HJ. Development of an adenovirus vector with tetracycline rgulatable human tumor necrosis factor alpha gene expression. Cancer Res. 1997;57:3339–3343

    PubMed  CAS  Google Scholar 

  19. Kay MA, Landen CN, Rothenberg SR, et al. In vivo hepatic gene therapy: complete albeit transient correction of factor IX deficiency in hemophilia B dogs. Proc Natl Acad Sci USA. 1994;91:2353–2357

    Article  PubMed  CAS  Google Scholar 

  20. Kay MA, Manno CS, Ragni MV, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genet. 2000;24:257–261.

    Article  PubMed  CAS  Google Scholar 

  21. Kay MA, Rothenberg S, Landen CN, et al.. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science. 1993;262:117–119

    Article  PubMed  CAS  Google Scholar 

  22. Kochanek S. Development of high-capacity adenoviral vectors for gene therapy. Hum Gene Ther. 1999;10:2451–2459

    Article  PubMed  CAS  Google Scholar 

  23. Kriegler M. Gene transfer and expression: a laboratory manual. New York: W.H. Freeman and Company; 1991

    Google Scholar 

  24. Kung S-H, Hagstrom JN, Cass D, et al. Human factor IX corrects the bleeding diathesis of mice with hemophilia B. Blood. 1998;91:784–790

    PubMed  CAS  Google Scholar 

  25. Louis DS, Verma IM. An alternative approach to somatic cell gene therapy. Proc Natl Acad Sci USA. 1988;85:3150–3154

    Article  Google Scholar 

  26. Miao CH, Oashi K, Patijn GA, et al. Inclusion of the hepatic locus control region, an intron and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther. 2000;1:522–532

    Article  PubMed  CAS  Google Scholar 

  27. Miao CH, Thompson AR, Loeb K, Ye X. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther. 2001;3:947–957

    Article  PubMed  CAS  Google Scholar 

  28. Morsy MA, Gu M, Motzel S, et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA. 1998;95:7866–7871

    Article  PubMed  CAS  Google Scholar 

  29. Nakagawa S, Massie B, Hawley RG. Tetracycline regulatable adenovirus vectors: pharmacologic properties and clinical potential. Europ J Pharm Sci. 2001;13:53–60

    Article  CAS  Google Scholar 

  30. Nakai H, Herzog RW, Hagstrom JN, et al Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood. 1998;91:4600–4607

    PubMed  CAS  Google Scholar 

  31. Poller W, Schneider-Rasp S, Lieber U, et al Stabilization of transgene expression by incorporation of E3 region genes in an adenoviral factor IX vector and treatment by transient anti-CD4 treatment of the host. Gene Ther. 1996;3:521–532

    PubMed  CAS  Google Scholar 

  32. Roth DA, Tawa NE, O’Brien JM, Treco DA, Seiden RR Non-viral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med. 2001;344:1735–1742

    Article  PubMed  CAS  Google Scholar 

  33. Serguera C, Bohl D, Rolland E, Prevost P, Heard M. Control of erythropoietin by doxycycline or Mifepristone in Mice bearing polymer-encapsulated engineered cells. Hum Gene Ther. 1999;10:375–383

    Article  PubMed  CAS  Google Scholar 

  34. Shen R-F, Clift SM, DeMayo JL, Sifers RN, Finegold MJ, Woo SLC. Tissue-specific regulation of human alphal-antitrypsin gene expression in transgenic Mice. DNA. 1989;8:101–108

    Article  PubMed  CAS  Google Scholar 

  35. SMith TAG, Mehaffey MG, Kayda DB, et al Adenovirus Mediated expression of therapeutic plasma levels of human factor IX in Mice. Nature Genet. 1993;5:397–402

    Article  PubMed  CAS  Google Scholar 

  36. Van Hylckama Vlieg A, van der Linden IM, Bertina RM, Rosendaal FR. High levels of factor IX increase the risk of venous thrombosis. Blood. 2000;95:3678–3682

    Google Scholar 

  37. Walter J, You Q, Hagstrom JN, Sands M, High KA. Successful expression of human factor IX following repeat administration of an adenoviral vector in Mice. Proc Natl Acad Sci USA. 1996;93:3056–3061

    Article  PubMed  CAS  Google Scholar 

  38. Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM. Sustained correction of bleeding disorder in hemophilia B Mice by gene therapy. Proc Natl Acad Sci USA. 1999;96:3906–3910

    Article  PubMed  CAS  Google Scholar 

  39. Wang Y, Xu J, Pierson T, O’Malley BW, Tsai SY. Positive and negative regulation of gene expression in eukaryotic cells with an inducible transcriptional regulator. Gene Ther. 1997;4:432–441

    Article  PubMed  CAS  Google Scholar 

  40. White GC. Gene therapy in hemophilia: clinical trials update. Thromb Haemost. 2001;86: 172–177

    PubMed  CAS  Google Scholar 

  41. 41. Yao S-H, Wilson JM, Nabel EG, Kurachi S, Hachiya HL, Kurachi K. Expression of human factor IX in rat capillary endothelial cells: toward somatic gene therapy for hemophilia B. Proc Natl Acad Sci USA. 1991;88:8101–8105

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srour, M.A. et al. (2003). Adenovirus-mediated regulatable Expression of human Factor IX in vitro and in vivo . In: Scharrer, I., Schramm, W. (eds) 32nd Hemophilia Symposium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18150-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18150-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43884-7

  • Online ISBN: 978-3-642-18150-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics