Skip to main content

Wet Artificial Life: The Construction of Artificial Living Systems

  • Chapter
  • First Online:
Principles of Evolution

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

The creation of artificial cell-like entities – chemical systems that are able to self-replicate and evolve – requires the integration of containers, metabolism, and information. In this chapter, we present possible candidates for these subsystems and the experimental achievements made toward their replication. The discussion focuses on several suggested designs to create artificial cells from nonliving material that are currently being pursued both experimentally and theoretically in several laboratories around the world. One particular approach toward wet artificial life is presented in detail. Finally, the evolutionary advantage of cellular aggregates over naked replicator systems and the evolutionary potential of the various approaches are discussed. The enormous progress toward man-made artificial cells nourishes the hope that wet artificial life might be achieved within the next several years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hanczyc, in Protocells: Bridging Nonliving and Living Matter, ed. by S. Rasmussen, M. Bedau, L. Chen, D. Deamer, D. Krakauer, N. Packard, P. Stadler (MIT Press, Cambridge, MA, 2008), pp. 3–18

    Google Scholar 

  2. J.I. Glass, N. Assad-Garcia, N. Alperovich, S. Yooseph, M.R. Lewis, M. Maruf, C.A. Hutchison III, H.O. Smith, J.C. Venter, Proc. Natl. Acad. Sci. USA 103(2), 425 (2006)

    Article  ADS  Google Scholar 

  3. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Watson, Molecular Biology of the Cell (Garland Science, New York, NY, 2002)

    Google Scholar 

  4. P.A. Monnard, in Prebiotic Evolution and Astrobiology, ed. by J.T.F. Wong, A. Lazcano (Landes Bioscience, Austin, TX, 2008)

    Google Scholar 

  5. D. Sievers, G. von Kiedrowski, Nature 369, 221 (1994)

    Article  ADS  Google Scholar 

  6. B.G. Bag, G. von Kiedrowski, Pure Appl. Chem. 68(11), 2145 (1996)

    Article  Google Scholar 

  7. G. von Kiedrowski, Angew. Chem. Int. Ed. 25(10), 932 (1986)

    Google Scholar 

  8. G. von Kiedrowski, B. Wlotzka, J. Helbing, M. Matzen, S. Jordan, Angew. Chem. Int. Ed. 30(4), 423 (1991)

    Article  Google Scholar 

  9. I. Scheuring, E. Száthmary, J. Theor. Biol. 212, 99 (2001)

    Article  Google Scholar 

  10. P.L. Luisi, P. Waldea, T. Oberholzer, Curr. Opin. Colloid Interface Sci. 4(1), 33 (1999)

    Article  Google Scholar 

  11. D. Deamer, J.P. Dworkin, S.A. Sandford, M.P. Bernstein, L.J. Allamandola, Astrobiology 2(4) (2002)

    Google Scholar 

  12. S.S. Mansy, Int. J. Mol. Sci. 10, 835 (2009)

    Article  Google Scholar 

  13. P.A. Bachmann, P.L. Luisi, J. Lang, J. Am. Chem. Soc. 113, 8204 (1991)

    Article  Google Scholar 

  14. P.A. Bachmann, P. Walde, P.L. Luisi, J. Lang, J. Am. Chem. Soc. 112, 8200 (1990)

    Article  Google Scholar 

  15. K. Suzuki, T. Ikegami, Artif. Life 15(1), 59 (2009)

    Article  Google Scholar 

  16. P.A. Monnard, D. Deamer, Anatom. Record 268, 196 (2002)

    Article  Google Scholar 

  17. M. Hanczyc, J.W. Szostak, Curr. Opin. Chem. Biol. 8, 660 (2004)

    Article  Google Scholar 

  18. T. Baumgart, S.T. Hess, W.W. Webb, Nature 425, 821 (2003)

    Article  ADS  Google Scholar 

  19. H. Noguchi, M. Takasu, Biophys. J. 83, 299 (2002)

    Article  ADS  Google Scholar 

  20. J. Macía, R.V. Solé, J. Theor. Biol. 245(3), 400 (2007)

    Article  Google Scholar 

  21. R.V. Solé, J. Macía, H. Fellermann, A. Munteanu, J. Sardanyés, S. Valverde, in Protocells: Bridging Nonliving and Living Matter, ed. by S. Rasmussen, M. Bedau, L. Chen, D. Deamer, D. Krakauer, N. Packard, P. Stadler (MIT Press, Cambridge, MA, 2008), pp. 213–231

    Google Scholar 

  22. P.A. Bachmann, P.L. Luisi, J. Lang, Nature 357, 57 (1992)

    Article  ADS  Google Scholar 

  23. S.A. Kauffman, J. Theor. Biol. 119, 1 (1986)

    Article  Google Scholar 

  24. J. Farmer, S. Kauffman, N. Packard, Physica D 22, 50 (1986)

    Article  MathSciNet  Google Scholar 

  25. R.J. Bagley, J.D. Farmer, in Artificial Life II, ed. by C.G. Langton, C. Taylor, J.D. Farmer, S. Rasmussen (Addison-Wesley, Reading, MA, 1991), pp. 93–140

    Google Scholar 

  26. E. Smith, H. Morowitz, Proc. Natl. Acad. Sci. USA 101(36), 13 168 (2004)

    Article  Google Scholar 

  27. H.R. Maturana, F.J. Varela, Autopoiesis and Cognition: The Realization of the Living (Reidel, Dordrecht, 1980)

    Google Scholar 

  28. P.L. Luisi, Naturwissenschaften 90, 49 (2003)

    ADS  Google Scholar 

  29. T. Gánti, The Principles of Life (Oxford University Press, Oxford, 2003)

    Book  Google Scholar 

  30. A. Munteanu, R.V. Solé, J. Theor. Biol. 240(3), 434 (2006)

    Article  Google Scholar 

  31. S. Rasmussen, M. Bedau, L. Chen, D. Deamer, D. Krakauer, N. Packard, P. Stadler (eds.), Protocells: Bridging Nonliving and Living Matter (MIT Press, Cambridge, MA, 2008)

    Google Scholar 

  32. S. Rasmussen, M. Bedau, J. McCaskill, N. Packard, in Protocells: Bridging Nonliving and Living Matter, ed. by S. Rasmussen, M. Bedau, L. Chen, D. Deamer, D. Krakauer, N. Packard, P. Stadler (MIT Press, Cambridge, MA, 2008), pp. 71–100

    Google Scholar 

  33. S. Rasmussen, L. Chen, M. Nilsson, S. Abe, Artif. Life 9, 269 (2003)

    Article  Google Scholar 

  34. W. Szostak, D.P. Bartel, P.L. Luisi, Synthesizing life. Nature 409, 387–390 (2001)

    Article  Google Scholar 

  35. J.A. Doudna, J.W. Szostak, Nature 339, 519 (1989)

    Article  ADS  Google Scholar 

  36. D.P. Bartel, P.J. Unrau, Trends Cell Biol. 9, M9 (1999)

    Article  Google Scholar 

  37. S.S. Mansy, J.P. Schrum, M. Krishnamurthy, S. Tobé, D.A. Treco, J.W. Szostak, Nature 454, 122 (2008)

    Article  ADS  Google Scholar 

  38. P.L. Luisi, F. Ferri, and P. Stano. Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften, 93, 1–13 (2006)

    Article  ADS  Google Scholar 

  39. A.C. Chakrabarti, R.R. Breaker, G.F. Joyce, D.W. Deamer, J. Mol. Evol. 39, 555 (1994)

    Article  Google Scholar 

  40. T. Oberholzer, R. Wick, P.L. Luisi, C.K. Biebricher, Biochem. Biophys. Res. Commun. 207(1), 250 (1995)

    Article  Google Scholar 

  41. T. Oberholzer, M. Albrizio, P.L. Luisi, Chem. Biol. 2(10), 677 (1995)

    Article  Google Scholar 

  42. W. Yu, K. Sato, M. Wakabayashi, T. Nakaishi, E.P. Ko-Mitamura, Y. Shima, I. Urabe, T. Yomo, J. Biosci. Bioeng. 92, 590 (2001)

    Article  Google Scholar 

  43. V. Noireaux, A. Libchaber, Proc. Natl. Acad. Sci. USA 101(51), 17669 (2004)

    Article  ADS  Google Scholar 

  44. K. Ishikawa, K. Sato, Y. Shima, I. Urabe, T. Yomo, FEBS Lett. 576, 387 (2004)

    Article  Google Scholar 

  45. H. Fellermann, R. Solé, Philos. Trans. R. Soc. Lond. B 362(1486), 1803 (2007)

    Article  Google Scholar 

  46. H. Fellermann, S. Rasmussen, H.J. Ziock, R. Solé, Artif. Life 13(4), 319 (2007)

    Article  Google Scholar 

  47. H. Fellermann, Physically embedded minimal self-replicating systems – studies by simulation. Ph.D. thesis, University of Osnabrück (2009)

    Google Scholar 

  48. M. DeClue, P.A. Monnard, J. Bailey, S. Maurer, G. Colins, H.J. Ziock, S. Rasmussen, J. Boncella, J. Am. Chem. Soc. 131, 931 (2009)

    Article  Google Scholar 

  49. C. Knutson, G. Benkö, T. Rocheleau, F. Mouffouk, J. Maselko, A. Shreve, L. Chen, S. Rasmussen, Artif. Life 14(2), 189 (2008)

    Article  Google Scholar 

  50. Y.A. Berlin, A.L. Burin, M.A. Ratner, Superlattices Microstruct. 28(4), 241 (2000)

    Article  ADS  Google Scholar 

  51. G.F. Joyce, Orig. Life Evol. Biosph. 14, 613 (1984)

    Article  Google Scholar 

  52. O.L. Acevedo, L.E. Orgel, J. Mol. Biol. 197(2), 187 (1987)

    Article  Google Scholar 

  53. A. Luther, R. Brandsch, G. von Kiedrowski, Nature 396, 245 (1998)

    Article  ADS  Google Scholar 

  54. T. Rocheleau, S. Rasmussen, P.E. Nielson, M.N. Jacobi, H. Ziock, Philos. Trans. R. Soc. Lond. B 362, 1841 (2007)

    Article  Google Scholar 

  55. A. Munteanu, C.S.O. Attolini, S. Rasmussen, H. Ziock, R.V. Solé, Philos. Trans. R. Soc. Lond. B 362, 1847 (2007)

    Article  Google Scholar 

  56. R. Serra, T. Carletti, Artif. Life 13(2), 123 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Steen Rasmussen, Pierre-Alain Monnard, Goran Goranovič, James Boncella, Hans-Joachim Ziock, the members of the FLint Center for Fundamental Living Technology, and the Protocell Assembly team of the Los Alamos National Laboratory for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Fellermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fellermann, H. (2011). Wet Artificial Life: The Construction of Artificial Living Systems. In: Meyer-Ortmanns, H., Thurner, S. (eds) Principles of Evolution. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18137-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18137-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18136-8

  • Online ISBN: 978-3-642-18137-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics