The Family of Languages Generated by Non-cooperative Membrane Systems

  • Artiom Alhazov
  • Constantin Ciubotaru
  • Sergiu Ivanov
  • Yurii Rogozhin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6501)


The aim of this paper is to study the family of languages generated by the transitional membrane systems without cooperation and without additional ingredients. The fundamental nature of these basic systems makes it possible to also define the corresponding family of languages in terms of derivation trees of context-free grammars. We also compare this family to the well-known language families and discuss its properties. An example of a language is given which is considerably more “difficult” than those in the established lower bounds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Ciubotaru, C., Ivanov, S., Rogozhin, Y.: Membrane Systems Languages Are Polynomial-Time Parsable. Computer Science Journal of Moldova (2010) (submitted)Google Scholar
  2. 2.
    Alhazov, A., Ciubotaru, C., Rogozhin, Y., Ivanov, S.: The Membrane Systems Language Class. In: Eighth Brainstorming Week on Membrane Computing, Sevilla, 23–35 (2010); And LA Symposium, RIMS Kôkyûroku Series 1691, Kyoto University, pp. 44–50 (2010)Google Scholar
  3. 3.
    Alhazov, A., Sburlan, D.: Static Sorting P Systems. Applications of Membrane Computing. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing. Natural Computing Series, pp. 215–252. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bernardini, F., Gheorghe, M.: Language Generating by means of P Systems with Active Membranes. Brainstorming Week on Membrane Computing, Technical Report, 26/03, Rovira i Virgili University, Tarragona, 46–60 (2003)Google Scholar
  5. 5.
    Csuhaj-Varjú, E.: P Automata. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the Computational Complexity of P Automata. Natural Computing 5(2), 109–126 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Ibarra, O.H., Păun, G.: Characterizations of Context-Sensitive Languages and Other Language Classes in Terms of Symport/Antiport P Systems. Theoretical Computer Science 358(1), 88–103 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Păun, G., Rozenberg, G., Salomaa, A.: Membrane Computing with an External Output. Fundamenta Informaticae 41(3), 313–340 (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  12. 12.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  13. 13.
    Qi, Z., You, J., Mao, H.: P Systems and Petri Nets. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 286–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    P systems webpage,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 2
  • Constantin Ciubotaru
    • 1
  • Sergiu Ivanov
    • 1
    • 3
  • Yurii Rogozhin
    • 1
  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.IEC, Department of Information Engineering Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Faculty of Computers, Informatics and MicroelectronicsTechnical University of MoldovaChişinăuMoldova

Personalised recommendations