Advertisement

Flattening the Transition P Systems with Dissolution

  • Oana Agrigoroaiei
  • Gabriel Ciobanu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6501)

Abstract

Given a transition P system \(\it\Pi\) with dissolution, promoters and inhibitors having several membranes, we construct a P system \(\it\Pi^f\) with promoters and inhibitors and with only one membrane. The evolution of this “flat” P system \(\it\Pi^f\) simulates the evolution of initial transition P system \(\it\Pi\) by replacing any dissolution stage of a configuration in \(\it\Pi\) by specific rules application in a configuration of \(\it\Pi^f\). The transition P systems without dissolution represent a special case.

Keywords

Membrane System Special Rule Evolution Step Rule Application Special Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrigoroaiei, O., Ciobanu, G.: Rewriting Logic Specification of Membrane Systems with Promoters and Inhibitors. Electronic Notes in TCS 238, 5–22 (2009)zbMATHGoogle Scholar
  2. 2.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A P Systems Flat Form Preserving Step-by-step Behaviour. Fundamenta Informaticae 87, 1–34 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bottoni, P., Martín-Vide, C., Paun, G., Rozenberg, G.: Membrane Systems with Promoters/Inhibitors. Acta Informatica 38, 695–720 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P Systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Qi, Z., You, J., Mao, H.: P Systems and Petri Nets. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 286–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Oana Agrigoroaiei
    • 1
  • Gabriel Ciobanu
    • 2
  1. 1.Institute of Computer ScienceRomanian AcademyIaşiRomania
  2. 2.“A.I.Cuza” UniversityIaşiRomania

Personalised recommendations