Advertisement

An Algorithmic Approach to Tilings of Hyperbolic Spaces: 10 Years Later

  • Maurice Margenstern
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6501)

Abstract

In this paper, we give an account of the algorithmic approach developed by the author to study tilings of hyperbolic spaces. We sketchily remember the results which were obtained by this approach and we conclude by possible applications, indicating a few ones already performed and proposing three others.

Keywords

Cellular Automaton Turing Machine Hyperbolic Space Global Function Hyperbolic Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Jacob, E., Becker, I., Shapira, Y.: Bacterial Linguistic Communication and Social Intelligence. Trends in Microbiology 12(8), 366–372 (2004)CrossRefGoogle Scholar
  2. 2.
    Berger, R.: The undecidability of the domino problem. Memoirs of the American Mathematical Society 66, 1–72 (1966)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chelghoum, K., Margenstern, M., Martin, B., Pecci, I.: Palette hyperbolique: un outil pour interagir avec des ensembles de données. In: IHM 2004, Namur (2004) (Hyperbolic chooser: a tool to interact with data, (French))Google Scholar
  4. 4.
    Chelghoum, K., Margenstern, M., Martin, B., Pecci, I.: Tools for implementing cellular automata in grid {7,3} of the hyperbolic plane. In: DMCS 2004 (2004)Google Scholar
  5. 5.
    Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15(1), 1–40 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hedlund, G.: Endomorphisms and automorphisms of shift dynamical systems. Math. Systems Theory 3, 320–375 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Henderson, D.W., Taimina, D.: Crocheting the Hyperbolic Plane. Mathematical Intelligencer 23(2), 17–28 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Herrmann, F., Margenstern, M.: A universal cellular automaton in the hyperbolic plane. Theoretical Computer Science 296, 327–364 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Iwamoto, C., Margenstern, M.: Time and Space Complexity Classes of Hyperbolic Cellular Automata. IEICE Transactions on Information and Systems 387-D(3), 700–707 (2004)Google Scholar
  10. 10.
    Iwamoto, C., Margenstern, M., Morita, K., Worsch, T.: Polynomial Time Cellular Automata in the Hyperbolic Plane Accept Exactly the PSPACE Languages. In: SCI 2002 (2002)Google Scholar
  11. 11.
    Kari, J.: Reversibility and Surjectivity Problems of Cellular Automata. Journal of Computer and System Sciences 48(1), 149–182 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Margenstern, M.: New Tools for Cellular Automata of the Hyperbolic Plane. Journal of Universal Computer Science 6(12), 1226–1252 (2000)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Margenstern, M.: A contribution of computer science to the combinatorial approach to hyperbolic geometry. In: SCI 2002 (2002)Google Scholar
  14. 14.
    Margenstern, M.: Revisiting Poincaré’s theorem with the splitting method. In: Bolyai 200. International Conference on Hyperbolic Geometry, Cluj-Napoca, Romania, October 1-4 (2002)Google Scholar
  15. 15.
    Margenstern, M.: Implementing Cellular Automata on the Triangular Grids of the Hyperbolic Plane for New Simulation Tools. In: ASTC 2003 (2003)Google Scholar
  16. 16.
    Margenstern, M.: Can Hyperbolic Geometry Be of Help for P Systems? In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 240–249. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Margenstern, M.: The tiling of the hyperbolic 4D space by the 120-cell is combinatoric. Journal of Universal Computer Science 10(9), 1212–1238 (2004)MathSciNetGoogle Scholar
  18. 18.
    Margenstern, M.: A new way to implement cellular automata on the penta- and heptagrids. Journal of Cellular Automata 1(1), 1–24 (2006)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Margenstern, M.: On the communication between cells of a cellular automaton on the penta- and heptagrids of the hyperbolic plane. Journal of Cellular Automata 1(3), 213–232 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Margenstern, M.: A universal cellular automaton with five states in the 3D hyperbolic space. Journal of Cellular Automata 1(4), 315–351 (2006)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Margenstern, M.: Cellular Automata in Hyperbolic Spaces. Theory, vol. 1, p. 422. Old City Publishing, Philadelphia (2007)zbMATHGoogle Scholar
  22. 22.
    Margenstern, M.: The Domino Problem of the Hyperbolic Plane is Undecidable. Bulletin of the EATCS 93, 220–237 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Margenstern, M.: The domino problem of the hyperbolic plane is undecidable. Theoretical Computer Science 407, 29–84 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Margenstern, M.: The Finite Tiling Problem Is Undecidable in the Hyperbolic Plane. International Journal of Foundations of Computer Science 19(4), 971–982 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Margenstern, M.: On a Characteriztion of Cellular Automata in Tilings of the Hyperbolic Plane. International Journal of Foundations of Computer Science 19(5), 1235–1257 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Margenstern, M.: Cellular Automata in Hyperbolic Spaces. Implementation and computations, vol. 2, p. 360. Old City Publishing, Philadelphia (2008)zbMATHGoogle Scholar
  27. 27.
    Margenstern, M.: The Injectivity of the Global Function of a Cellular Automaton in the Hyperbolic Plane is Undecidable. Fundamenta Informaticae 94(1), 63–99 (2009)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Margenstern, M.: About the Garden of Eden theorems for cellular automata in the hyperbolic plane. Electronic Notes in Theoretical Computer Science 252, 93–102 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Margenstern, M.: The periodic domino problem is undecidable in the hyperbolic plane. In: Bournez, O., Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 154–165. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Margenstern, M.: A universal cellular automaton on the heptagrid of the hyperbolic plane with four states. Theoretical Computer Science (to appear, 2010)Google Scholar
  31. 31.
    Margenstern, M.: A weakly universal cellular automaton in the hyperbolic 3D space with three states. arXiv:1002.4290v1[cs,DS], p. 54Google Scholar
  32. 32.
    Margenstern, M.: A weakly universal cellular automaton in the hyperbolic 3D space with two states. arXiv:1005.4826v1[cs,FL], p. 38Google Scholar
  33. 33.
    Margenstern, M., Martin, B., Umeo, H., Yamano, S., Nishioka, K.: A Proposal for a Japanese Keyboard on Cellular Phones. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 299–306. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Margenstern, M., Morita, K.: NP problems are tractable in the space of cellular automata in the hyperbolic plane. Theoretical Computer Science 259, 99–128 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Margenstern, M., Skordev, G.: Fibonacci Type Coding for the Regular Rectangular Tilings of the Hyperbolic Plane. Journal of Universal Computer Science 9(5), 398–422 (2003)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Margenstern, M., Skordev, G.: Tools for devising cellular automata in the hyperbolic 3D space. Fundamenta Informaticae 58(2), 369–398 (2003)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Margenstern, M., Song, Y.: A universal cellular automaton on the ternary heptagrid. Electronic Notes in Theoretical Computer Science 223, 167–185 (2008)zbMATHCrossRefGoogle Scholar
  38. 38.
    Margenstern, M., Song, Y.: A new universal cellular automaton on the pentagrid. Parallel Processing Letters 19(2), 227–246 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Martin, B.: VirHKey: a VIRtual Hyperbolic KEYboard with gesture interaction and visual feedback for mobile devices. In: Mobile HCI 2005, pp. 99–106 (2005)Google Scholar
  40. 40.
    Morgenstein, D., Kreinovich, V.: Which Algorithms are Feasible and Which are not Depends on the Geometry of Space-Time. Geocombinatorics 4(3), 80–97 (1995)zbMATHGoogle Scholar
  41. 41.
    Moore, E.F.: Machine Models of Self-reproduction. In: Proceedings of the Symposium in Applied Mathematics, vol. 14, pp. 17–33 (1962)Google Scholar
  42. 42.
    Myhill, J.: The Converse to Moore’s Garden-of-Eden Theorem. In: Proceedings of the American Mathematical Society, vol. 14, pp. 685–686 (1963)Google Scholar
  43. 43.
    Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae 12, 177–209 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Robinson, R.M.: Undecidable tiling problems in the hyperbolic plane. Inventiones Mathematicae 44, 259–264 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Stewart, I.: A Subway Named Turing, Mathematical Recreations in Scientific American, pp. 90–92 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maurice Margenstern
    • 1
  1. 1.LITA EA 3097, UFR MIM, and CNRS, LORIAUniversité Paul Verlaine − MetzMETZ Cédex 1France

Personalised recommendations