Advertisement

Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction

  • Markus Holzer
  • Martin Kutrib
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6501)

Abstract

The quest for artificial self-reproduction dates back to the end of the 1940’s and started with the work of John von Neumann on self-reproducing cellular automata. Nowadays (artificial) self-reproduction is one of the cornerstones of automata theory, which plays an important role in the field of molecular nanotechnology. We briefly summarize the development on the research subject of artificial self-reproduction starting with von Neumann’s ideas. Moreover, we pay special attention to the concepts of trivial and non-trivial self-reproduction by Herman, Langton, and others. Our tour on the subject obviously lacks completeness and it reflects our personal view of what constitute the most interesting links to the important aspects of artificial self-reproduction.

Keywords

Cellular Automaton Turing Machine Quiescent State Rigid Element Universal Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amoroso, S., Cooper, G.: Tesselation structures for reproduction of arbitrary patterns. J. Comput. System Sci. 5, 455–464 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbib, M.A.: Simple self-reproducing universal automata. Inform. Control 9, 177–189 (1966)CrossRefzbMATHGoogle Scholar
  3. 3.
    Banks, E.R.: Information processing and transmission in cellular automata. Technical Report MAC TR-81, MIT (1971)Google Scholar
  4. 4.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: What is Life? In: Winning Ways for your Mathematical Plays?, vol. 2, ch. 25, pp. 817–850. Academic Press, London (1982)Google Scholar
  5. 5.
    Burks, A.W.: Von Neumann’s self-reproducing automata. In: Burks, A.W. (ed.) Essays on Cellular Automata, pp. 3–64. University of Illinois Press, Urbana (1970)Google Scholar
  6. 6.
    Codd, E.F.: Cellular Automata. Academic Press, New York (1968)zbMATHGoogle Scholar
  7. 7.
    Gardner, M.: The fantastic combinations of John Conway’s new solitaire game ‘life’. Sci. Amer. 223, 120–123 (1970)CrossRefGoogle Scholar
  8. 8.
    Hamilton, W.L., Mertens Jr., J.R.: Reproduction in tesselation structures. J. Comput. System Sci. 10, 248–252 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Herman, G.T.: On universal computer-constructors. Inform. Process. Lett. 2, 61–64 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Langton, C.G.: Self-reproduction in cellular automata. Phys. D 10, 135–144 (1984)CrossRefzbMATHGoogle Scholar
  11. 11.
    Moore, E.F.: Machine models of self-reproduction. Proc. Symposia in Applied Mathematics 14, 17–33 (1962)CrossRefzbMATHGoogle Scholar
  12. 12.
    Morita, K., Imai, K.: Self-reproduction in a reversible cellular space. Theoret. Comput. Sci. 168, 337–366 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ostrand, T.J.: Pattern reproduction in tesselation automata of arbitrary dimension. J. Comput. System Sci. 5, 623–628 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sipper, M.: Fifty years of research on self-replication: An overview. Artificial Life 4, 237–257 (1998)CrossRefGoogle Scholar
  15. 15.
    Thatcher, J.W.: Universality in the von neumann cellular model. Technical Report 06376, 06689, 03105-30-T, University of Michigan (1964)Google Scholar
  16. 16.
    Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc., Series 2 42, 230–265 (1936)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc., Series 2 43, 544–546 (1937)MathSciNetzbMATHGoogle Scholar
  18. 18.
    von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)Google Scholar
  19. 19.
    Wainwright, R.T.: Life is universal!. In: Winter Simulation Conference (WSC 1974). WSC/SIGSIM, vol. 2, pp. 449–459 (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Markus Holzer
    • 1
  • Martin Kutrib
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations