Advertisement

Mobility in Computer Science and in Membrane Systems

  • Gabriel Ciobanu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6501)

Abstract

Mathematical models are useful in different fields to provide a deeper and more insightful understanding of various systems and notions. We refer here to the formal description of mobility in computer science. The first formalism in computer science able to describe mobility is the π-calculus [16]. It was followed by ambient calculus [6]. A biologically-inspired version of ambient calculus is given by bioambients [19] and several brane calculi [5]. On the other hand, systems of mobile membranes [13] represent other formalisms with mobility in the framework of membrane computing.

Keywords

Membrane System Parallel Composition Reduction Rule Membrane Computing Process Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aman, B., Ciobanu, G.: Timed Mobile Ambients for Network Protocols. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 234–250. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Aman, B., Ciobanu, G.: On the Relationship Between Membranes and Ambients. Biosystems 91, 515–530 (2008)CrossRefGoogle Scholar
  3. 3.
    Aman, B., Ciobanu, G.: Simple, Enhanced and Mutual Mobile Membranes. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS(LNBI), vol. 5750, pp. 26–44. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Aman, B., Ciobanu, G.: Turing Completeness Using Three Mobile Membranes. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 42–55. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Ciobanu, G., Krishna, S.N.: Enhanced Mobile Membranes: Computability Results. Theory of Computing Systems (to appear, 2011)Google Scholar
  8. 8.
    Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. Electronic Notes in Theoretical Computer Science 164, 81–99 (2006)CrossRefGoogle Scholar
  9. 9.
    Ciobanu, G., Rotaru, M.: Molecular Interaction. Theoretical Computer Science 289, 801–827 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ciobanu, G., Zakharov, V.: Encoding Mobile Ambients into π-calculus. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 148–161. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Hennessy, M.: A Distributed π-calculus. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Krishna, S.N.: Universality Results for P Systems Based on Brane Calculi Operations. Theoretical Computer Science 371, 83–105 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Krishna, S.N., Păun, G.: P Systems with Mobile Membranes. Natural Computing 4, 255–274 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Levi, F., Sangiorgi, D.: Mobile Safe Ambients. ACM TOPLAS 25, 1–69 (2003)CrossRefGoogle Scholar
  15. 15.
    Milner, R.: Elements of Interaction. Turing Award Lecture. ACM Comm. 36, 78–89 (1993)CrossRefGoogle Scholar
  16. 16.
    Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  17. 17.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Păun, G., Rozenberg, A., Salomaa, A.: Handbook of Membrane Computing. Oxford University Press, Oxford (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325, 141–167 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Regev, A., Shapiro, E.: The π-calculus as an Abstraction for Biomolecular Systems. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology. Natural Computing Series. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Victor, B., Moller, F.: The Mobility Workbench – A Tool for the π-calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gabriel Ciobanu
    • 1
    • 2
  1. 1.Institute of Computer ScienceRomanian AcademyIaşiRomania
  2. 2.“A.I.Cuza” University of IaşiIaşiRomania

Personalised recommendations