Advertisement

P Systems and Unique-Sum Sets

  • Pierluigi Frisco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6501)

Abstract

We study P systems with symport/antiport and a new model of purely catalytic P systems, called purely multi-catalytic P systems, when these devices use only one symbol. Our proofs use unique-sum sets, sets of integer numbers whose sum can only be obtained in a unique way with the elements of the set itself.

We improve some results related to the descriptional complexity of the P systems with symport/antiport considered by us and we define one infinite hierarchy of computations.

Keywords

Turing Machine Applied Rule Input Format Register Machine Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Freund, R.: P systems with one membrane and symport/antiport rules of five symbols are computationally complete. In: Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero, F.R., Sburlan, D. (eds.) Proceedings of the Third Brainstorming week on Membrane Computing, Sevilla, Spain, January 31 - February 4, pp. 19–28 (2005), Fe ́nix Editoria, Sevilla (2005) Google Scholar
  2. 2.
    Alhazov, A., Freund, R., Oswald, M.: Symbol/membrane complexity of P systems with symport/antiport. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 96–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  4. 4.
    Ja Barzin, M.: On a certain class of Turing machines (Minsky machines. Algebra i Logika 1(6), 42–51 (1963) (in Russian) MR 27 #2415.MathSciNetGoogle Scholar
  5. 5.
    Frisco, P.: On s-sum vectors. Technical report, Heriot-Watt University, HW-MACS-TR-0058 (2008), http://www.macs.hw.ac.uk:8080/techreps/build_table.jsp
  6. 6.
    Frisco, P.: Computing with Cells. Advances in Membrane Computing. Oxford University Press, Oxford (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Frisco, P.: Conformon P systems and topology of information flow. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 30–53. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theoretical Computer Science 7, 311–324 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hopcroft, J.E., Ullman, D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  10. 10.
    Ibarra, O.H.: On membrane hierarchy in P systems. Theoretical Computer Science 334, 115–129 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ibarra, O.H., Woodworth, S.: On symport/antiport P systems with small number of objects. International Journal of Computer Mathematics 83(7), 613–629 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Minsky, M.L.: Computation: Finite and Infinite Machines. In: Automatic computation, Prentice-Hall, Englewood Cliffs (1967)Google Scholar
  13. 13.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Computing 20(3), 295–306 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 1(61), 108–143 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Păun, G., Pazos, J., Pérez-Jiménez, M.J., Rodriguez-Paton, A.: Symport/antiport P systems with three objects are universal. Fundamenta Informaticae 64, 1–4 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Qi, Z., You, J., Mao, H.: P systems and Petri nets. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 286–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    The P Systems Webpage, http://ppage.psystems.eu/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pierluigi Frisco
    • 1
  1. 1.School of Math. and Comp. SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations