On Generalized Communicating P Systems with One Symbol

  • Erzsébet Csuhaj-Varjú
  • György Vaszil
  • Sergey Verlan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6501)


Generalized communicating P systems (GCPSs) are tissue-like membrane systems with only rules for moving pairs of objects. Despite their simplicity, they are able to generate any recursively enumerable set of numbers even having restricted variants of communication rules. We show that GCPSs still remain computationally complete if they are given with a singleton alphabet of objects and with only one of the restricted types of rules: parallel-shift, join, presence-move, or chain.


Main Block Minimal Interaction Interaction Rule Register Machine Communication Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial versus total halting in P systems. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Proceedings of the Fifth Brainstorming Week on Membrane Computing, Sevilla, pp. 1–20 (2007)Google Scholar
  2. 2.
    Alhazov, A., Freund, R., Rogozhin, Y.: Computational power of symport/antiport: History, advances, and open problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: Producer/consumer in membrane systems and Petri nets. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 43–52. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E., Verlan, S.: On generalized communicating P systems with minimal interaction rules. Theoretical Computer Science (to appear)Google Scholar
  5. 5.
    Frisco, P.: Computing with Cells. Oxford University Press, Oxford (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theoretical Computer Science 296(2), 295–326 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Minsky, M.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  8. 8.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Computing 20, 295–305 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  11. 11.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  12. 12.
    The P systems webpage,
  13. 13.
    Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: On communication in tissue P systems: conditional uniport. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 521–535. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Generalized communicating P systems. Theoretical Computer Science 404(1-2), 170–184 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
  • György Vaszil
    • 1
  • Sergey Verlan
    • 2
  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary
  2. 2.Laboratoire d’Algorithmique, Complexité et Logique, Département InformatiqueUniversité Paris EstCréteilFrance

Personalised recommendations