Advertisement

Membrane Systems Working in Generating and Accepting Modes: Expressiveness and Encodings

  • Roberto Barbuti
  • Andrea Maggiolo-Schettini
  • Paolo Milazzo
  • Simone Tini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6501)

Abstract

Membrane systems can be seen either as generators or as acceptors of multiset languages. In this paper we compare the expressive power of membrane systems working in accepting mode with that of membrane systems working in generating mode. Features like determinism, presence of promoters and of cooperative rules are considered. The comparison between some of the considered classes of membrane systems is carried out by defining encodings of one class into another.

Keywords

Control Object Membrane System Expressive Power Computation Step Evolution Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A P Systems Flat Form Preserving Step-by-step Behaviour. Fundamenta Informaticae 87, 1–34 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bianco, L., Manca, V.: Encoding–Decoding Transitional Systems for Classes of P Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 134–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bottoni, P., Martin-Víde, C., Pǎun, G., Rozenberg, G.: Membrane Systems with Promoters/Inhibitors. Acta Informatica 38, 695–720 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E.: P Automata. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Calude, C.S., Pǎun, G.: Bio-steps beyond Turing. BioSystems 77, 175–194 (2004)CrossRefGoogle Scholar
  6. 6.
    Fernau, H.: Graph-controlled Grammars as Language Acceptors. Journal of Automata, Languages and Combinatorics 2, 79–91 (1997)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fernau, H., Holzer, M.: Accepting Multi-Agent Systems II. Acta Cybernetica 12, 361–380 (1996)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fernau, H., Holzer, M., Bordihn, H.: Accepting Multi-Agent Systems. Computers and Artificial Intelligence 15, 123–139 (1996)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Freund, R., Kari, L., Oswald, M., Sosk, P.: Computationally Universal P Systems Without Priorities: Two Catalysts Are Sufficient. Theor. Comput. Sci. 330(2), 251–266 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Freund, O., Pǎun, G.: On Deterministic P Systems (Manuscript), http://ppage.psystems.eu/
  11. 11.
    Freund, R., Oswald, M.: A short note on analysing P systems. Bulletin of the EATCS 79, 231–236 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ibarra, O.H.: On the Computational Complexity of Membrane Systems. Theoretical Computer Science 320, 89–109 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pǎun, G.: Computing with Membranes. Journal of Computer and System Sciences 61, 108–143 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pǎun, G.: Membrane computing. An introduction. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Porreca, A.E., Mauri, G., Zandron, C.: Complexity Classes for Membrane Systems. Theoretical Informatics and Applications 40, 141–162 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Qi, Z., You, J., Mao, H.: P systems and Petri nets. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 286–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Roberto Barbuti
    • 1
  • Andrea Maggiolo-Schettini
    • 1
  • Paolo Milazzo
    • 1
  • Simone Tini
    • 2
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità dell’InsubriaComoItaly

Personalised recommendations