Skip to main content

Stability of Fractional-Order Systems

  • Chapter
Fractional-Order Nonlinear Systems

Part of the book series: Nonlinear Physical Science ((NPS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed E., El-Sayed A. M. A. and El-Saka H. A. A., 2006, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Physics Letters A, 358, 1–4.

    Article  MathSciNet  MATH  Google Scholar 

  • Ahn H. S. and Chen Y. Q., 2008, Necessary and suficient stability condition of fractional-order interval linear systems, Automatica, 44, 2985–2988.

    Article  MATH  Google Scholar 

  • Akcay H. and Malti R., 2008, On the completeness problem for fractional rationals with incommensurable differentiation orders, Proc. of the 17th World Congress IFAC, Soul, Korea, July 6–11, 15367–15371.

    Google Scholar 

  • Anderson B. D. O., Bose N. I. and Jury E. I., 1974, A simple test for zeros of a complex polynomial in a sector, IEEE Transactions on Automatic Control, AC-19, 437–438.

    Article  MathSciNet  MATH  Google Scholar 

  • Aoun M., Malti R., Levron F. and Oustaloup A., 2004, Numerical simulations of fractional systems: An overview of existing methods and improvements, Nonlinear Dynamics, 38, 117–131.

    Article  MATH  Google Scholar 

  • Aoun M., Malti R., Levron F. and Oustaloup A., 2007, Synthesis of fractional Laguerre basis for system approximation, Automatica, 43, 1640–1648.

    Article  MathSciNet  MATH  Google Scholar 

  • Bayat F. M. and Afshar M., 2008, Extending the root-locus method to fractionalorder systems, Journal of Applied Mathematics, Article ID 528934.

    Google Scholar 

  • Bayat F. M. and Ghartemani M. K., 2008, On the essential instabilities caused by multi-valued transfer functions, Math. Problems in Engineering, Article ID419046.

    Google Scholar 

  • Bayat F. M., Afshar M. and Ghartemani M. K., 2009, Extension of the root-locus method to a certain class of fractional-order systems, ISA Transactions, 48, 48–53.

    Article  Google Scholar 

  • Bellman R., 1953, Stability Theory of Differential Equations, McGraw-Hill Book Company, New York.

    MATH  Google Scholar 

  • Bloch F., 1946, Nuclear induction, Physics Review, 70, 460–473.

    Article  Google Scholar 

  • Bonnet C. and Partington J. R., 2000, Coprime factorizations and stability of fractional differential systems, Systems and Control Letters, 41, 167–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Charef A., 2006, Modeling and analog realization of the fundamental linear fractional order differential equation, Nonlinear Dynamics, 46, 195–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y. Q. and Moore K. L., 2002, Analytical stability bound for a class of delayed fractional-order dynamic systems, Nonlinear Dynamics, 29, 191–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y. Q., Ahn H. S. and Xue D., 2006a, Robust controllability of interval fractional order linear time invariant systems, Signal Processing, 86, 2794–2802.

    Article  MATH  Google Scholar 

  • Chen Y. Q., Ahn H. S. and Podlubny I., 2006b, Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal Processing, 86, 2611–2618.

    Article  MATH  Google Scholar 

  • Deng W., Li C. and Lu J., 2007, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynamics, 48, 409–416.

    Article  MathSciNet  MATH  Google Scholar 

  • Dorčák Ľ., 1994, Numerical Models for the Simulation of the Fractional-Order Control Systems, UEF-04-94, The Academy of Sciences, Inst. of Experimental Physic, Košice, Slovakia.

    Google Scholar 

  • Dorf R. C. and Bishop R. H., 1990, Modern Control Systems, Addison-Wesley, New York.

    MATH  Google Scholar 

  • Dzieliski A. and Sierociuk D., 2008, Stability of discrete fractional order state-space systems, Journal of Vibration and Control, 14, 1543–1556.

    Article  MathSciNet  MATH  Google Scholar 

  • El-Salam S. A. A. and El-Sayed A. M. A., 2007, On the stability of some fractionalorder non-autonomous systems, Electr. J. of Qualitative Theory of Diff. Equations, 6, 1–14.

    Google Scholar 

  • Ghartemani M. K. and Bayat F. M., 2008, Necessary and sufficient conditions for perfect command following and disturbance rejection in fractional order systems, Proc. of the 17th World Congress IFAC, Soul, Korea, July 6–11, 364–369.

    Google Scholar 

  • Gross B. and Braga E. P., 1961, Singularities of Linear System Functions, Elsevier Publishing, New York.

    MATH  Google Scholar 

  • Haacke E. M., Brown R. W., Thompson M. R. and Venkatesan R., 1999, Magnetic Resonance Imaging: Physical Principles and Sequence Design, Wiley, New York.

    Google Scholar 

  • Hamamci S. E., 2008, Stabilization using fractional-order PI and PID controllers, Nonlinear Dynamics, 51, 329–343.

    Article  MATH  Google Scholar 

  • Han Q. L., Xue A., Liu S. and Yu X., 2008, Robust absolute stability criteria for uncertain Lure systems of neutral type, Int. J. Robust Nonlinear Control, 18, 278–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Henrion D., 2001, Robust stability analysis: Interval uncertainty, Graduate course on polynomial methods for robust control — Part 1 and Part 2, http://www.laas.fr/ henrion/courses/.

    Google Scholar 

  • Hwang C. and Cheng Y. C., 2006, A numerical algorithm for stability testing of fractional delay systems, Automatica, 42, 825–831.

    Article  MathSciNet  MATH  Google Scholar 

  • Kheirizad I., Tavazoei M. S. and Jalali A. A., 2009, Stability criteria for a class of fractional order systems, Nonlinear Dyn., DOI: 10.1007/s11071-009-9638-1.

    Google Scholar 

  • Kotek Z., Kubik S. and Razim M., 1973, Nonlinear dynamical systems, TKI-SNTL, Praha (in Czech).

    Google Scholar 

  • LePage W. R., 1961, Complex variables and the Laplace transform for engineers, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Li Y., Chen Y. Q., Podlubny I. and Cao Y., 2008, Mittag-Leffler stability of fractional order nonlinear dynamic system, Proc. of the 3rd IFAC Workshop on Fractional Differentiation and its Applications, November 05–07, Ankara, Turkey.

    Google Scholar 

  • Lu J. G. and Chen G., 2009, Robust stability and stabilization of fractional order interval systems: An LMI approach, IEEE Transactions on Automatic Control, 54, 1294–1299.

    Article  MathSciNet  MATH  Google Scholar 

  • Magin R. L., Feng X. and Baleanu D., 2009, Solving the fractional order Bloch equation, Concepts in Magnetic Resonance Part A, 34A, 16–23.

    Article  Google Scholar 

  • Matignon D., 1996, Stability result on fractional differential equations with applications to control processing, IMACS-SMC Proceedings, Lille, France, July, 963–968.

    Google Scholar 

  • Matignon D., 1998, Stability properties for generalized fractional differential systems, Proc. of Fractional Differential Systems: Models, Methods and App., 5, 145–158.

    MathSciNet  MATH  Google Scholar 

  • Nataraj P. S. V. and Kalla R., 2009, Computation of limit cycles for uncertain nonlinear fractional-order systems, Physica Scripta, Article ID 014021.

    Google Scholar 

  • N’Doye I., Zasadzinski M., Radhy N. E. and Bouaziz A., 2009, Robust controller design for linear fractional-order systems with nonlinear time-varying model uncertainties, Proc. of the 17th Mediterranean Conference on Control and Automation, June 24–26, Thessaloniki, Greece, 821–826.

    Google Scholar 

  • Oustaloup A., Sabatier J., Lanusse P., Malti R., Melchior P., Moreau X. and Moze M., 2008, An overview of the CRONE approach in system analysis, modeling and identification, observation and control, Proc. of the 17th World Congress IFAC, Soul, Korea, July 6–11, 14254–14265.

    Google Scholar 

  • Özturk N. and Uraz A., 1985, An analysis stability test for a certain class of distributed parameter systems with delay, IEEE Transactions on Circuit and Systems, CAS-32, 393–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Petráš I. and Dorčák Ľ., 1999, The frequency method for stability investigation of fractional control systems, Journal of SACTA, 2, 75–85.

    MathSciNet  Google Scholar 

  • Petráš I., Chen Y. Q. and Vinagre B. M., 2002a, A robust stability test procedure for a class of uncertain LTI fractional order systems, Proc. of the Int. Carpathian Control Conf., May 27–30, Malenovice, Czech republic, 247–252.

    Google Scholar 

  • Petráš I., Vinagre B. M., Dorčák Ľ. and Feliu V., 2002, Fractional Digital Control of a Heat Solid: Experimental Results, Proc. of the Int. Carpathian Control Conf., May 27–30, Malenovice, Czech republic, 365–370.

    Google Scholar 

  • Petráš I., Chen Y. Q. and Vinagre B. M., 2004a, Robust stability test for interval fractional order linear systems, Volume 208–210, Chapter 6.5: V. D. Blondel and A. Megretski (Eds.), Unsolved Problems in the Mathematics of Systems and Control, USA, Princeton University Press.

    Google Scholar 

  • Petráš I., Chen Y. Q., Vinagre B. M. and Podlubny I., 2004b, Stability of linear time invariant systems with interval fractional orders and interval coefficients, Proc. of the Int. Conf. on Computation Cybernetics, 8/30-9/1, Vienna, Austria, 1–4.

    Google Scholar 

  • Petráš I., 2009, Stability of fractional-order systems with rational orders: A survey, Fractional Calculus and Applied Analysis, 12, 269–298.

    MathSciNet  MATH  Google Scholar 

  • Podlubny I., 1999, Fractional Differential Equations, Academic Press, San Diego.

    MATH  Google Scholar 

  • Radwan A. G., Soliman A. M., Elwakil A. S. and Sedeek A., 2009, On the stability of linear systems with fractional-order elements, Chaos, Solitons and Fractals, 40, 2317–2328.

    Article  MATH  Google Scholar 

  • Tan N., Özgüven Ö. F. and Özyetkin M. M., 2009, Robust stability analysis of fractional order interval polynomials, ISA Transactions, 48, 166–172.

    Article  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2007a, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Proc., 1, 171–181.

    Article  Google Scholar 

  • Tavazoei M. S. and Haeri, M., 2007b, A necessary condition for double scroll attractor existence in fractional-order systems, Physics Letters A, 367, 102–113.

    Article  MATH  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2008a, Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear Analysis, 69, 1299–1320.

    Article  MathSciNet  MATH  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2008b, Chaotic attractors in incommensurate fractional order systems, Physica D, 237, 2628–2637.

    Article  MathSciNet  MATH  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2009, A note on the stability of fractional order systems, Mathematics and Computers in Simulation, 79, 1566–1576.

    Article  MathSciNet  MATH  Google Scholar 

  • Vinagre B. M. and Feliu V., 2007, Optimal fractional controllers for rational order systems: A special case of the Wiener-Hopf spectral factorization method, IEEE Transactions on Automatic Control, 52, 2385–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Yeung K. S. and Wang S. S., 1987, A Simple Proof of Kharitonovs Theorem, IEEE Transactions on Automatic Control, AC-32, 822–823.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petráš, I. (2011). Stability of Fractional-Order Systems. In: Fractional-Order Nonlinear Systems. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18101-6_4

Download citation

Publish with us

Policies and ethics