Skip to main content

Introduction

  • Chapter

Part of the book series: Nonlinear Physical Science ((NPS))

Abstract

Fractional calculus is a topic being more than 300 years old. The idea of fractional calculus has been known since the regular calculus, with the first reference probably being associated with Leibniz and L’Hospital in 1695 where half-order derivative was mentioned. In a correspondence between Johann Bernoulli and Leibniz in 1695, Leibniz mentioned the derivative of general order. In 1730 the subject of fractional calculus did not escape Euler’s attention. J. L. Lagrange in 1772 contributed to fractional calculus indirectly, when he developed the law of exponents for differential operators. In 1812, P. S. Laplace defined the fractional derivative by means of integral and in 1819 S. F. Lacroix mentioned a derivative of arbitrary order in his 700-page long text, followed by J. B. J. Fourier in 1822, who mentioned the derivative of arbitrary order. The first use of fractional operations was made by N. H. Abel in 1823 in the solution of tautochrome problem. J. Liouville made the first major study of fractional calculus in 1832, where he applied his definitions to problems in theory. In 1867, A. K. Grünwald worked on the fractional operations. G. F. B. Riemann developed the theory of fractional integration during his school days and published his paper in 1892. A. V. Letnikov wrote several papers on this topic from 1868 to 1872. Oliver Heaviside published a collection of papers in 1892, where he showed the so-called Heaviside operational calculus concerned with linear generalized operators. In the period of 1900 to 1970 the principal contributors to the subject of fractional calculus were, for example, H. H. Hardy, S. Samko, H. Weyl, M. Riesz, S. Blair, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad W. M., 2005, Hyperchaos in fractional order nonlinear systems, Chaos, Solitons and Fractals, 26, 1459–1465.

    Article  Google Scholar 

  • Andrievskii B. R. and Fradkov A. L., 2003, Control of chaos: Methods and applications. I. Methods, Automation and Remote Control, 64, 673–713.

    Article  MathSciNet  Google Scholar 

  • Andrievskii B. R. and Fradkov A. L., 2004, Control of chaos: Methods and applications. II. Applications, Automation and Remote Control, 65, 505–533.

    Article  MathSciNet  Google Scholar 

  • Arena P., Caponetto R., Fortuna L. and Porto D., 1998, Bifurcation and chaos in noninteger order cellular neural networks, International Journal of Bifurcation and Chaos, 8, 1527–1539.

    Article  Google Scholar 

  • Arena P., Caponetto R., Fortuna L. and Porto D., 2000, Nonlinear Noninteger Order Circuits and Systems — An Introduction, World Scientific, Singapore.

    Book  Google Scholar 

  • Axtell M. and Bise E. M., 1990, Fractional calculus applications in control systems, Proc. of the IEEE Nat. Aerospace and Electronics Conf., New York, 563–566.

    Google Scholar 

  • Bode H. W., 1949, Network Analysis and Feedback Amplifier Design, Tung Hwa Book Company, Shanghai.

    Google Scholar 

  • Cafagna D., 2007, Fractional Calculus: A mathematical tool from the past for present engineers, IEEE Industrial Electronics Magazine, 1, 35–40.

    Article  MathSciNet  Google Scholar 

  • Carlson G. E. and Halijak C. A., 1964, Approximation of fractional capacitors (1/s)1/n by a regular Newton process, IEEE Trans. on Circuit Theory, 11, 210–213.

    Article  Google Scholar 

  • Charef A., Sun H. H., Tsao Y. Y. and Onaral B., 1992, Fractal system as represented by singularity function, IEEE Transactions on Automatic Control, 37, 1465–1470.

    Article  MathSciNet  Google Scholar 

  • Deng W., Li C. and Lu J., 2007, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynamics, 48, 409–416.

    Article  MathSciNet  Google Scholar 

  • Dorcák Ľ, 1994, Numerical Models for the Simulation of the Fractional-Order Control Systems, UEF-04-94, The Academy of Sciences, Inst. of Experimental Physic, Košice, Slovakia.

    Google Scholar 

  • Gao X. and Yu J., 2005, Chaos in the fractional order periodically forced complex Duffing’s oscillators, Chaos, Solitons and Fractals, 24, 1097–1104.

    Article  Google Scholar 

  • Guo L. J., 2005, Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems, Chinese Physics, 14, 1517–1521.

    Article  Google Scholar 

  • Hartley T. T., Lorenzo C. F. and Qammer H. K., 1995, Chaos on a fractional Chua’s system, IEEE Trans. Circ. Syst. Fund. Theor. Appl., 42, 485–490.

    Article  Google Scholar 

  • Li C. and Chen G., 2004, Chaos and hyperchaos in the fractional-order Rossler equations, Physica A, 341, 55–61.

    Article  MathSciNet  Google Scholar 

  • Lu J. G., 2005a, Chaotic dynamics and synchronization of fractional-order Arneodo’s systems, Chaos, Solitons and Fractals, 26, 1125–1133.

    Article  Google Scholar 

  • Lu J. G., 2005b, Chaotic dynamics and synchronization of fractional-order Chua’s circuits with a piecewise-linear nonlinearity, Int. Journal of Modern Physics B, 19, 3249–3259.

    Article  MathSciNet  Google Scholar 

  • Magin R. L., 2006, Fractional Calculus in Bioengineering, Begell House Publishers, Redding.

    Google Scholar 

  • da Graca Marcos, M., Duarte F. B. M. and Machado J. A. T., 2008, Fractional dynamics in the trajectory control of redundant manipulators, Communications in Nonlinear Science and Numerical Simulations, 13, 1836–1844.

    Article  Google Scholar 

  • Miller K. S. and Ross B., 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons. Inc., New York.

    MATH  Google Scholar 

  • Nakagava M. and Sorimachi K., 1992, Basic characteristics of a fractance device, IEICE Trans. fundamentals, E75-A, 1814–1818.

    Google Scholar 

  • Nimmo S. and Evans A. K., 1999, The effects of continuously varying the fractional differential order of chaotic nonlinear systems, Chaos, Solitons and Fractals, 10, 1111–1118.

    Article  MathSciNet  Google Scholar 

  • Oldham K. B. and Spanier J., 1974, The Fractional Calculus, Academic Press, New York.

    MATH  Google Scholar 

  • Oustaloup A., 1995, La Derivation Non Entiere: Theorie, Synthese et Applications, Hermes, Paris.

    MATH  Google Scholar 

  • Parada F. J. V., Tapia J. A. O. and Ramirez J. A., 2007, Effective medium equations for fractional Fick’s law in porous media, Physica A, 373, 339–353.

    Article  Google Scholar 

  • Podlubny I., 1999a, Fractional Differential Equations, Academic Press, San Diego.

    MATH  Google Scholar 

  • Podlubny I., 1999b, Fractional-order systems and PI λ D μ-controllers, IEEE Transactions on Automatic Control, 44, 208–213.

    Article  MathSciNet  Google Scholar 

  • Silva C. P., 1993, Shil’nikov’s theorem — A tutorial, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 40, 675–682.

    Article  MathSciNet  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2007, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Proc., 1, 171–181.

    Article  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2008, Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear Analysis, 69, 1299–1320.

    Article  MathSciNet  Google Scholar 

  • Torvik P. J. and Bagley R. L., 1984, On the appearance of the fractional derivative in the behavior of real materials, Transactions of the ASME, 51, 294–298.

    Article  Google Scholar 

  • Tseng C. C., 2007, Design of FIR and IIR fractional order Simpson digital integrators, Signal Processing, 87, 1045–1057.

    Article  Google Scholar 

  • Vinagre B. M., Chen Y. Q. and Petráš I., 2003, Two direct Tustin discretization methods for fractional-order differentiator/integrator, J. Franklin Inst., 340, 349–362.

    Article  MathSciNet  Google Scholar 

  • Wang J. C., 1987, Realizations of generalized Warburg impedance with RC ladder networks and transmission lines, Journal of The Electrochemical Society, 134, 1915–1920.

    Article  Google Scholar 

  • West B. J., Bologna M. and Grigolini P., 2002, Physics of Fractal Operators, Springer, New York.

    Google Scholar 

  • Westerlund S., 2002, Dead Matter Has Memory!, Causal Consulting, Kalmar, Sweden.

    Google Scholar 

  • Zaslavsky G. M., 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petráš, I. (2011). Introduction. In: Fractional-Order Nonlinear Systems. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18101-6_1

Download citation

Publish with us

Policies and ethics