Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 850))

  • 1701 Accesses

Abstract

Bohmian mechanics constitutes a different way to understand quantum mechanics, where the role of an external observer is not present, and quantum phenomena and processes are explained in a causal way, connecting system configurations at different times by means of trajectories. However, in order to better understand the ideas and concepts behind this approach to the quantum world, in this chapter some relevant ingredients from the standard quantum mechanics are briefly revisited. In this regard, special emphasis is made on trajectory-based approaches or their use to obtain quantum-mechanical information directly (calculation of observables) or inferring it from quantum-classical correspondence arguments (phase–space distributions, such as the Wigner and Husimi distributions). Thus, apart from general quantum concepts, the derivation of Schrödinger’s equation by means of the Hamiltonian analogy, the Feynman path integral formulation, the semiclassical route to quantum mechanics or the eikonal approach, will be also briefly exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unless otherwise stated, the concept of field function (or, in brief, a field) will be used to denote a function which depends on a set of independent variables.

  2. 2.

    Actually, this point in common between scalar optics and quantum mechanics has allowed that many solutions to problems within the latter were directly adapted from well-known nineteenth century solutions from the former [18].

  3. 3.

    For a more detailed discussion on the properties (and differences) between pure and nonpure or mixed states, see, for example, [28, 29].

References

  1. Jammer, M.: The Conceptual Development of Quantum Mechanics, 2nd edn. American Institute of Physics, New York (1989)

    Google Scholar 

  2. Jammer, M.: The Philosophy of Quantum Mechanics. The Interpretations of Quantum Mechanics in Historical Perspective. Wiley-Interscience, New York (1974)

    Google Scholar 

  3. Cushing, J.T.: Quantum Mechanics Historical Contingency and the Copenhagen Hegemony. The University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  4. Sánchez-Ron, J.M.: Historia de la Física Cuántica. El período fundacional. Drakontos, Barcelona (2001)

    Google Scholar 

  5. Selleri, F.: El debate de la teoría cuántica. Alianza Editorial, Madrid (1986)

    Google Scholar 

  6. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  7. Margenau, H., Murphy, G.M.: The Mathematics of Physics and Chemistry, 2nd edn. Van Nostrand, New York (1956)

    Google Scholar 

  8. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926)

    Article  ADS  Google Scholar 

  9. Courant, R., Hilbert, D.: Methods of Mathematical Physics. vol. 1. Wiley, New York (1953)

    Google Scholar 

  10. Schrödinger, E.: Quantisierung als Eigenwertproblem (series of papers). Ann. Phys. (Leipzig) 79, 361–376, 489–527 (1926)

    Google Scholar 

  11. Schrödinger, E.: Quantisierung als Eigenwertproblem (series of papers). Ann. Phys. (Leipzig) 80, 437–490 (1926)

    MATH  Google Scholar 

  12. Schrödinger, E.: Quantisierung als Eigenwertproblem (series of papers). Ann. Phys. (Leipzig) 81, 109–139 (1926)

    MATH  Google Scholar 

  13. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  14. Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford (1980)

    Google Scholar 

  15. de Broglie, L.: Recherche sur la théorie des quanta. Ann. Physique 3, 22–128 (1925)

    MATH  Google Scholar 

  16. Sommerfeld, A., Runge, I.: Anwendung der Vektorrechnung auf die Grundlagen der geometrischen Optik. Ann. Phys. (Leipzig) 35, 290–298 (1911)

    Google Scholar 

  17. Sommerfeld, A.: Mechanics. Lectures on Theoretical Physics, vol. 1, pp. 229–230. Academic Press, London (1964)

    Google Scholar 

  18. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  19. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  ADS  Google Scholar 

  20. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pinsky, M.: Introduction to Fourier Analysis and Wavelets. Brooks/Cole, Pacific Grove (2002)

    Google Scholar 

  22. Plancherel, M.: Contribution à à l’étude de la représentation d’une fonction arbitraire par des intégrales définies. Rendiconti del Circolo Matematico di Palermo 30, 289–335 (1910)

    Article  MATH  Google Scholar 

  23. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, Singapore (1968)

    Google Scholar 

  24. Born, M.: Zur Quantenmechanik der Stoßvorgänge (series of papers). Z. Phys. 37, 863–867 (1926)

    Article  ADS  Google Scholar 

  25. Born, M.: Zur Quantenmechanik der Stoßvorgänge (series of papers). Z. Phys. 38, 803–840 (1927)

    ADS  Google Scholar 

  26. Born, M.: Physical aspects of quantum mechanics. Nature 119, 354–357 (1927)

    Article  ADS  MATH  Google Scholar 

  27. Born, M.: Quantenmechanik und Statistik. Naturwissenschaften 15, 238–242 (1927)

    Article  ADS  Google Scholar 

  28. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970)

    Article  ADS  MATH  Google Scholar 

  29. Ballentine, L.E.: Quantum Mechanics. A Modern Development. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  30. Tarozzi, G., van der Merwe, A. (eds.): Open Questions in Quantum Physics. Reidel, Dordrecht (1985)

    Google Scholar 

  31. Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

  32. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). Translated into English by Beyer, R.T.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    Google Scholar 

  33. Razavy, M.: Quantum Theory of Tunneling. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  34. Ankerhold, J.: Quantum Tunneling in Complex Systems. Springer, Berlin (2007)

    MATH  Google Scholar 

  35. Main, I.G.: Vibrations and Waves in Physics, 3rd edn. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  36. Fowler, R.H., Nordheim, L.W.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928)

    Article  ADS  MATH  Google Scholar 

  37. Gamow, G.: Zur Quantentheorie des Atomkernes. Z. Phys. 51, 204–212 (1928)

    Article  ADS  Google Scholar 

  38. Gurney, R.W., Condon, E.U.: Wave mechanics and radioactive disintegration. Nature 122, 439–439 (1928)

    Article  ADS  MATH  Google Scholar 

  39. Wood, R.W.: A new form of cathode discharge and the production of X-rays, together with some notes on diffraction. Preliminary communication. Phys. Rev. (Ser. I) 5, 1–10 (1897)

    Article  ADS  Google Scholar 

  40. Elster, J., Geitel, H.F.: Über einige zweckmässige Abänderungen am Quadrantelectrometer. Ann. Phys. (Leipzig) 300, 680–684 (1898)

    Article  ADS  Google Scholar 

  41. Fornel, F.: Evanescent Waves. From Newtonian Optics to Atomic Optics. Springer, Berlin (2001)

    Google Scholar 

  42. Zachos, C.K., Fairlie, D.B., Curtright, T.L. (eds.): Quantum Mechanics in Phase Space. An Overview with Selected Papers. World Scientific, Singapore (2005)

    Google Scholar 

  43. Wigner, E.P.: Quantum mechanical distribution functions revisited. In: Yourgrau, W., van der Merwe, A. (eds.) Perspectives in Quantum Theory, pp. 25–36. Dover, New York (1971)

    Google Scholar 

  44. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  MATH  Google Scholar 

  45. Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn 22, 264–283 (1940)

    MATH  Google Scholar 

  46. Lee, H.-W.: Theory and application of the quantum phase–space distribution functions. Phys. Rep. 259, 147–211 (1995)

    Article  MathSciNet  Google Scholar 

  47. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  48. Moyal, J.E.: Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 45, 99–124 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Fletcher, P.: The uniqueness of the Moyal algebra. Phys. Lett. B 248, 323–328 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  51. Strachan, I.A.B.: The Moyal bracket and the dispersionless limit of the KP hierarchy. J. Phys. A 28, 1967–1975 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Lee, H.-W., Scully, M.O.: Wigner phase–space description of a Morse oscillator. J. Chem. Phys. 77, 4604–4610 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  53. Feynman, R.P.: Space–time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  54. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  55. Dirac, P.A.M.: The Principles of Quantum Mechanics, 2nd edn, p. 125. Clarendon Press, Oxford (1935)

    Google Scholar 

  56. Feynman, R.P.: Statistical Mechanics. W. A. Benjamin, Reading (1972)

    Google Scholar 

  57. Schulman, L.S.: Techniques and Applications of Path Integrals. Wiley, New York (1981)

    Google Scholar 

  58. Ceperly, D.M.: Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279–355 (1995)

    Article  ADS  Google Scholar 

  59. Gaspard, P.: Chaos, Scattering and Statistical Mechanics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  60. van Vleck, J.H.: The correspondence principle in the statistical interpretation of quantum mechanics. Proc. Natl. Acad. Sci. USA 14, 178–188 (1928)

    Article  ADS  MATH  Google Scholar 

  61. Morette, C.: On the definition and approximation of Feynman’s path integrals. Phys. Rev. 81, 848–852 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. DeWitt, B.S.: Dynamical theory in curved spaces. I. A review of the classical and quantum action principle. Rev. Mod. Phys. 29, 377–397 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Miller, W.H.: Semiclassical theory of atom–diatom collisions: path integrals and the classical S matrix. J. Chem. Phys. 53, 1949–1959 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  64. Miller, W.H.: Classical S matrix: numerical applications to inelastic collisions. J. Chem. Phys. 53, 3578–3587 (1970)

    Article  ADS  Google Scholar 

  65. Miller, W.H.: Classical-limit quantum mechanics and the theory of molecular collisions. Adv. Chem. Phys. 25, 69–177 (1974)

    Article  Google Scholar 

  66. Miller, W.H.: The classical S-matrix in molecular collisions. Adv. Chem. Phys. 30, 77–136 (1975)

    Article  Google Scholar 

  67. Miller, W.H.: Classical S matrix for rotational excitation: quenching of quantum effects in molecular collisions. J. Chem. Phys. 54, 5386–5397 (1971)

    Article  ADS  Google Scholar 

  68. Doll, J.D., Miller, W.H.: Classical S-matrix for vibrational excitation of \(\hbox{H}_2\) by collision with He in three dimensions. J. Chem. Phys. 57, 5019–5026 (1972)

    Google Scholar 

  69. Marcus, R.A.: Theory of semiclassical transition probabilities (S-matrix) for inelastic and reactive collisions. J. Chem. Phys. 54, 3965–3979 (1971)

    Article  ADS  Google Scholar 

  70. Marcus, R.A.: Theory of semiclassical transition probabilities for inelastic and reactive collisions. V. Uniform approximation in multidimensional systems. J. Chem. Phys. 57, 4903–4909 (1972)

    Article  ADS  Google Scholar 

  71. Marcus, R.A.: Semiclassical S matrix theory. VI. Integral expression and transformation of conventional coordinates. J. Chem. Phys. 59, 5135–5144 (1973)

    Article  ADS  Google Scholar 

  72. Connor, J.N.L., Marcus, R.A.: Theory of semiclassical transition probabilities for inelastic and reactive collisions. II. Asymptotic evaluation of the S-matrix. J. Chem. Phys. 55, 5636–5643 (1971)

    Article  ADS  Google Scholar 

  73. Marcus, R.A.: Theory of semiclassical transition probabilities for inelastic and reactive collisions. III. Uniformization using exact trajectories. J. Chem. Phys. 56, 311–320 (1972)

    Article  ADS  Google Scholar 

  74. Marcus, R.A.: Theory of semiclassical transition probabilities (S-matrix) for inelastic and reactive collisions. Uniformation with elastic collision trajectories. J. Chem. Phys. 56, 3548–3550 (1972)

    Article  ADS  Google Scholar 

  75. Doll, J.D.: Semiclassical theory of atom–solid surface collisions: elastic scattering. Chem. Phys. 3, 57–264 (1974)

    Article  Google Scholar 

  76. Doll, J.D.: Semiclassical theory of atom–solid-surface collisions: application to the He–LiF diffraction. J. Chem. Phys. 61, 954–957 (1974)

    Article  ADS  Google Scholar 

  77. McCann, K.J., Celli, V.: A semiclassical treatment of atom–surface scattering: \(\hbox{He}+\hbox{LiF}(001){.}\) Surf. Sci. 61, 10–24 (1976)

    Google Scholar 

  78. Masel, R.I., Merrill, R.P., Miller, W.H.: A semiclassical model for atomic scattering from solid surfaces: He and Ne scattering from W(112). J. Chem. Phys. 64, 45–56 (1976)

    Article  ADS  Google Scholar 

  79. Masel, R.I., Merrill, R.P., Miller, W.H.: Atomic scattering from a sinusoidal hard wall: comparison of approximate methods with exact quantum results. J. Chem. Phys. 65, 2690–2699 (1976)

    Article  ADS  Google Scholar 

  80. Hubbard, L.M., Miller, W.H.: Application of the semiclassical perturbation (SCP) approximation to diffraction and rotationally inelastic scattering of atoms and molecules from surfaces. J. Chem. Phys. 78, 1801–1807 (1983)

    Article  ADS  Google Scholar 

  81. Hubbard, L.M., Miller, W.H.: Application of the semiclassical perturbation approximation to scattering from surfaces. Generalization to include phonon inelasticity. J. Chem. Phys. 80, 5827–5831 (1984)

    Article  ADS  Google Scholar 

  82. Guantes, R., Borondo, F., Jaffé, C., Miret-Artés, S.: Diffraction of atoms from stepped surfaces: a semiclassical chaotic S-matrix study. Phys. Rev. B 53, 14117–14126 (1996)

    Article  ADS  Google Scholar 

  83. Smilansky, U.: The classical and quantum theory of chaotic scattering. In: Giannoni, M.-J., Voros, A., Zinn-Justin, J. (eds.) Proceedings of the Les Houches Summer School in Chaos and Quantum Physics, Elsevier, Amsterdam (1992)

    Google Scholar 

  84. Eckhardt, B.: Irregular scattering. Physica D 33, 89–98 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  85. Guantes, R., Sanz, A.S., Margalef-Roig, J., Miret-Artés, S.: Atom–surface diffraction: a trajectory description. Surf. Sci. Rep. 53, 199–330 (2004)

    Article  ADS  Google Scholar 

  86. Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455–457 (1927)

    Article  ADS  Google Scholar 

  87. Child, M.S.: Semiclassical Mechanics with Molecular Applications. Clarendon Press, Oxford (1991)

    Google Scholar 

  88. Jeffreys, H.: On certain approximate solutions of linear differential equations of the second order. Proc. Lond. Math. Soc. 23(2), 428–436 (1925)

    Article  Google Scholar 

  89. Wentzel, G.: Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Phys. 38, 518–529 (1926)

    Article  ADS  Google Scholar 

  90. Kramers, H.A.: Wellenmechanik und halbzahlige Quantisierung. Z. Phys. 39, 828–840 (1926)

    Article  ADS  Google Scholar 

  91. Brillouin, L.: La mécanique ondulatoire de Schrödinger; une méthode générale de résolution par approximations successives. Comptes Rendus 183, 24–26 (1926)

    Google Scholar 

  92. Brillouin, L.: Sur un type général de problèmes, permettant la séparation des variables dans la mécanique ondulatoire de Schrödinger. Comptes Rendus 183, 270–271 (1926)

    MATH  Google Scholar 

  93. Messiah, A.: Quantum Mechanics. Dover, New York (1999)

    Google Scholar 

  94. Delos, J.B.: Semiclassical calculation of quantum mechanical wavefunctions. Adv. Chem. Phys. 65, 161–214 (1985)

    Article  Google Scholar 

  95. Gottfried, K.: Quantum Mechanics, vol. 1. W.A. Benjamin, New York (1966)

    Google Scholar 

  96. Maslov, V.P., Fedoriuk, M.V.: Semiclassical Approximations in Quantum Mechanics. D. Reidel, Boston (1981)

    Book  Google Scholar 

  97. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G. (eds.): Classical and quantum chaos. http://www.nbi.dk/ChaosBook/. Niels Bohr Institute, Copenhagen (2002)

  98. Eckart, C.: The approximate solution of the one-dimensional wave equations. Rev. Mod. Phys. 20, 399–417 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  99. Miller, W.H., Jansen op de Haar, B.M.D.D.: A new basis set method for quantum scattering calculations. J. Chem. Phys. 86, 6213–6220 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  100. Zhang, J.Z.H., Chu, S.-I., Miller, W.H.: Quantum scattering via the S-matrix version of the Kohn variational principle. J. Chem. Phys. 88, 6233–6239 (1988)

    Article  ADS  Google Scholar 

  101. Sepúlveda, M.A., Grossmann, F.: Time-dependent semiclassical mechanics. Adv. Chem. Phys. 96, 191–304 (1996)

    Article  Google Scholar 

  102. Miller, W.H.: Spiers memorial lecture quantum and semiclassical theory of chemical reaction rates. Faraday Discuss. 110, 1–21 (1998)

    Article  ADS  Google Scholar 

  103. Miller, W.H.: The semiclassical initial value representation: a potentially practical way for adding quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A 105, 2942–2955 (2001)

    Article  Google Scholar 

  104. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, Berlin (1990)

    Google Scholar 

  105. Glauber, R.J.: High energy collision theory. In: Brittin, W.E., Dunham, L.G. (eds.) Lectures in Theoretical Physics, vol. 1, p. 315. Interscience, New York (1959)

    Google Scholar 

  106. Weinberg, S.: Eikonal method in magnetohydrodynamics. Phys. Rev. 126, 1899–1909 (1962)

    Google Scholar 

  107. Garibaldi, U., Levi, A.C., Spadacini, R., Tommei, G.E.: Quantum theory of atom–surface scattering: diffraction and rainbow. Surf. Sci. 48, 649–675 (1975)

    Article  ADS  Google Scholar 

  108. Micha, D.A.: A self-consistent eikonal treatment of electronic transitions in molecular collisions. J. Chem. Phys. 78, 7138–7145 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  109. Cohen, J.M., Micha, D.A.: Electronically diabatic atom–atom collisions: a self-consistent eikonal approximation. J. Chem. Phys. 97, 1038–1052 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanz, Á.S., Miret-Artés, S. (2012). Elements of Quantum Mechanics. In: A Trajectory Description of Quantum Processes. I. Fundamentals. Lecture Notes in Physics, vol 850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18092-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18092-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18091-0

  • Online ISBN: 978-3-642-18092-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics