Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 850))

  • 1660 Accesses

Abstract

The theoretical framework for dissipative and stochastic dynamics of open classical systems is presented and discussed. Only linear friction is explicitly considered. In spite of the different approaches one may find in the literature, there are essentially three main ways to introduce stochasticity. First, phenomenologically, describing Brownian-like motions by means of the standard Langevin equation, where the system-environment interaction is governed by two parameters: temperature and friction. Second, by starting from the Liouville equation, which is satisfied by any dynamical variable. And third, the system-plus-bath approach, where the equations of motion can be expressed in terms of a generalized Langevin equation. System trajectories issued from solving such equations describe erratic or random motion and, therefore, they are usually called (classical) stochastic trajectories. In those cases where noise becomes negligible or zero, the stochastic dynamics becomes dissipative (trajectories then become smoother).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Razavy, M.: Classical and Quantum Dissipative Systems. Imperial College Press, London (2005)

    MATH  Google Scholar 

  2. Hänggi, P., Jung, P.: Colored noise in dynamical systems. Adv. Chem. Phys. 89, 239–326 (1995)

    Article  Google Scholar 

  3. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Nonequilibrium Statistical Mechanics. Springer-Verlag, Berlin (1985)

    Google Scholar 

  4. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids. Academic Press, New York (1986)

    Google Scholar 

  5. Boon, J.P., Yip, S.: Molecular Hydrodynamics. Dover, New York (1991)

    Google Scholar 

  6. McQuarrie, D.A.: Statistical Mechanics. Harper and Row, New York (1976)

    Google Scholar 

  7. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd edn. Springer-Verlag, New York (1992)

    MATH  Google Scholar 

  8. Goldstein, H.: Classical Mechanics. Addison–Wesley Publising Company, Reading, MA (1980)

    MATH  Google Scholar 

  9. Caldirola, P.: Forze non conservative nella meccanica quantistica. Nuovo Cimento 18, 393–400 (1941)

    Article  Google Scholar 

  10. Kanai, E.: On the quantization of the dissipative systems. Prog. Theor. Phys. 3, 440–442 (1948)

    Article  ADS  Google Scholar 

  11. Dekker, H.: Classical and quantum mechanics of the damped harmonic oscillator. Phys. Rep. 80, 1–110 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  12. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  13. Bateman, H.: On dissipative systems and related variational principles. Phys. Rev. 38, 815–819 (1931)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Ullersma, P.: An exactly solvable model for Brownian motion: I Derivation of the Langevin equation. Physica (Utrecht) 32, 27–55 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  15. Ullersma, P.: An exactly solvable model for Brownian motion: II Derivation of the Langevin equation. Physica (Utrecht) 32, 56–73 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  16. Ullersma, P.: An exactly solvable model for Brownian motion: III Motion of a heavy mass in a linear chain. Physica (Utrecht) 32, 74–89 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ullersma, P.: An exactly solvable model for Brownian motion: IV Susceptibility and Nyquist’s theorem. Physica (Utrecht) 32, 90–96 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  18. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, New York (2002)

    Google Scholar 

  19. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  20. Gardiner, C.W.: Handbook of Stochastic Methods. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  21. Risken, R.: The Fokker–Planck Equation. Springer-Verlag, Berlin (1984)

    MATH  Google Scholar 

  22. Pathria, R.K.: Statistical Mechanics. Pergamon Press, Oxford (1972)

    Google Scholar 

  23. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  24. Horsthemke, W., Lefever, R.: Noise-Induced Transition. Springer-Verlag, Berlin (1984)

    Google Scholar 

  25. Ingen-Housz, J.: Vermischte Schriften physisch-medizinischen Inhalts, vol. 2, pp. 123–126. Wappler, Vienna (1784)

    Google Scholar 

  26. Bywater, J.: Physiological Fragments: To Which are Added Supplementary Observations, to Shew That Vital Energies are of the Same Nature, and Both Derived From Solar Light, pp. 127–128. R. Hunter, London (1824)

    Google Scholar 

  27. Brow, R.: A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the poller of plants; and on the general existence of active molecules in organic and inorganic bodies. Phys. Mag. 4, 161–173 (1828)

    Google Scholar 

  28. Brown, R.: Additional remarks on active molecules. Phys. Mag. 6, 161–166 (1829)

    Google Scholar 

  29. Lauritzen, S.L.: Thiele: Pioneer in Statistics. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  30. Bachelier, L.: Théorie de la Spéculation, Annales Scientifiques de l’ École Normale Supérieure, vol. 3, pp. 21–86 (1900). Translated into English by Davis, M. Etheridge, A.: Louis Bachelier’s Theory of Speculation: The Origins of Modern Finance. Princeton University Press, Princeton (2006)

    Google Scholar 

  31. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik 17, 549–560 (1905)

    Article  ADS  MATH  Google Scholar 

  32. Einstein, A.: Investigations on the Theory of Brownian Movement. Dover, New York (1956)

    MATH  Google Scholar 

  33. Smoluchowski, M.: Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Physik 21, 756–780 (1906)

    Article  MATH  Google Scholar 

  34. Langevin, P.: Sur la théorie du mouvement brownien. Comptes Rendus 146, 530–532 (1908)

    MATH  Google Scholar 

  35. Wiener, N.: The average of an analytical functional and the Brownian movement. Proc. Nat. Acad. Sci. U. S. A. 7, 294–298 (1921)

    Article  ADS  Google Scholar 

  36. Wolfgang, P., Baschnagel , J.: Stochastic Processes. From Physics to Finance. Springer-Verlag, Berlin (1999)

    Google Scholar 

  37. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Lovesey, S.W.: Theory of Neutron Scattering From Condensed Matter. Clarendon Press, Oxford (1984)

    Google Scholar 

  39. Fokker, A.D.: Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Physik 43, 810–820 (1914)

    Article  ADS  Google Scholar 

  40. Planck, M.: Über einen Satz der statistichen Dynamik und eine Erweiterung in der Quantumtheorie. Sitzb. Akad. Berlin, pp. 324–341 (1917)

    Google Scholar 

  41. Kolmogorov, A.N.: Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104, 415–458 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kramers, H.A.: Brownian motion in a filed of force and the diffusion model of chemical reactions. Physica 8, 284–304 (1940)

    Article  MathSciNet  ADS  Google Scholar 

  43. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Balazs, N.L.: On the quantum-mechanical Fokker–Planck and Kramers–Chandrasekhar equation. Physica 94A, 181–191 (1978)

    Google Scholar 

  45. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  ADS  Google Scholar 

  46. Pollak, E.: Theory of activated rate processes: a new derivation of Kramers’ expression. J. Chem. Phys. 85, 865–867 (1986)

    Article  ADS  Google Scholar 

  47. Pollak, E., Grabert, H., Hänggi, P.: Theory of activated rate processes for arbitrary frequency dependent friction: solution of the turnover problem. J. Chem. Phys. 91, 4073–4087 (1989)

    Article  ADS  Google Scholar 

  48. Georgievskii, Y., Pollak, E.: Semiclassical theory of activated diffusion. Phys. Rev. E 49, 5098–5102 (1994)

    Article  ADS  Google Scholar 

  49. Mel’nikov, V.I., Meshkov, S.V.: Theory of activated rate processes: exact solution of the Kramers problem. J. Chem.Phys. 85, 1018–1027 (1986)

    Google Scholar 

  50. Mel’nikov, V.I.: The Kramers problem: Fifty years of development. Phys. Rep. 209, 1–71 (1991)

    Article  ADS  Google Scholar 

  51. Vega, J.L., Guantes, R., Miret-Artés, S.: Mean first passage time and the Kramers turnover theory in activated atom-surface diffusion. Phys. Chem. Chem. Phys. 4, 4985–4991 (2002)

    Article  Google Scholar 

  52. Guantes, R., Vega, J.L., Miret-Artés, S., Pollak, E.: Kramers’ turnover theory for diffusion of Na atoms on a Cu(001) surface measured by He scattering. J. Chem. Phys. 119, 2780–2791 (2003)

    Article  ADS  Google Scholar 

  53. Miret-Artés, S., Pollak, E.: The dynamics of activated surface diffusion. J. Phys.: Condens. Matter 17, S4133–S4150 (2005)

    Article  ADS  Google Scholar 

  54. Caldeira, A.O., Leggett, A.J.: Quantum tunneling in a dissipative system. Ann. Phys. 149, 374–456 (1983)

    Article  ADS  Google Scholar 

  55. Pollak, E., Miret-Artés, S.: Classical theory of atom surface scattering. The rainbow effect. Surf. Sci. Rep. (2012, to appear)

    Google Scholar 

  56. Moix, J.M., Pollak, E., Miret-Artés, S.: Friction-induced energy-loss rainbows in atom surface scattering. Phys. Rev. Lett. 104, 116103(1–4) (2010)

    Article  ADS  Google Scholar 

  57. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  ADS  Google Scholar 

  58. Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 172, 93–122 (1989)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanz, Á.S., Miret-Artés, S. (2012). Dynamics of Open Classical Systems. In: A Trajectory Description of Quantum Processes. I. Fundamentals. Lecture Notes in Physics, vol 850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18092-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18092-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18091-0

  • Online ISBN: 978-3-642-18092-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics