Skip to main content

The Microcirculation of the Critically III Pediatric Patient

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2011

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2011 ((AUICEM,volume 1))

  • 2112 Accesses

Abstract

Hemodynamic monitoring is the cornerstone of critical care, especially when the patient is hemodynamically unstable. It needs to be used with the perspective of tailoring treatment to physiology and the underlying disease process [1]. Monitoring should be easy to apply and negative side effects should be limited. The results should be reliable and reproducible, not least because we also need to monitor response to therapy when cardiovascular insufficiency has been identified. One of the primary goals of hemodynamic monitoring is to alert the physician to impending cardiovascular crisis before organ or tissue injury ensues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pinsky MR, Payen D (2005) Functional hemodynamic monitoring. Crit Care 9: 566–572

    Article  PubMed  Google Scholar 

  2. Tibby SM, Hatherill M, Marsh MJ, Murdoch IA (1997) Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch Dis Child 77: 516–518

    Article  PubMed  CAS  Google Scholar 

  3. Egan JR, Festa M, Cole AD, Nunn GR, Gillis J, Winlaw DS (2005) Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med 31: 568–573

    Article  PubMed  Google Scholar 

  4. Partrick DA, Bensard DD, Janik JS, Karrer FM (2002) Is hypotension a reliable indicator of blood loss from traumatic injury in children? Am J Surg 184: 555–559

    Article  PubMed  Google Scholar 

  5. Shoemaker WC, Beez M (2010) Pathophysiology, monitoring, and therapy of shock with organ failure. Appl Cardiopulm Pathophysiol 14: 5–15

    Google Scholar 

  6. Agata Y, Hiraishi S, Misawa H, et al (1994) Regional blood flow distribution and left ventricular output during early neonatal life: a quantitative ultrasonographic assessment. Pediatr Res 36: 805–810

    Article  PubMed  CAS  Google Scholar 

  7. Cattermole GN, Leung PY, Mak PS, Chan SS, Graham CA, Rainer TH (2010) The normal ranges of cardiovascular parameters in children measured using the Ultrasonic Cardiac Output Monitor. Crit Care Med 38: 1875–1881

    Article  PubMed  Google Scholar 

  8. Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE (1987) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 15: 923–929

    Article  PubMed  CAS  Google Scholar 

  9. Feltes TF, Pignatelli R, Kleinert S, Mariscalco MM (1994) Quantitated left ventricular systolic mechanics in children with septic shock utilizing noninvasive wall-stress analysis. Crit Care Med 22: 1647–1658

    PubMed  CAS  Google Scholar 

  10. Ceneviva G, Paschall JA, Maffei F, Carcillo JA (1998) Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 102: e19

    Article  PubMed  CAS  Google Scholar 

  11. Mercier JC, Beaufils F, Hartmann JF, Azema D (1988) Hemodynamic patterns of meningococcal shock in children. Crit Care Med 16: 27–33

    Article  PubMed  CAS  Google Scholar 

  12. Pollack MM, Fields AI, Ruttimann UE (1985) Distributions of cardiopulmonary variables in pediatric survivors and nonsurvivors of septic shock. Crit Care Med 13: 454–459

    Article  PubMed  CAS  Google Scholar 

  13. Kliegman R (2007) Nelson Textbook of Pediatrics, 18th Edition. Elsevier, Philadelphia

    Google Scholar 

  14. Tibby SM, Murdoch IA (2002) Measurement of cardiac output and tissue perfusion. Curr Opin Pediatr 14: 303–309

    Article  PubMed  Google Scholar 

  15. Tibby S (2008) Transpulmonary thermodilution: finally, a gold standard for pediatric cardiac output measurement. Pediatr Crit Care Med 9: 341–342

    Article  PubMed  Google Scholar 

  16. de Boode WP (2010) Cardiac output monitoring in newborns. Early Hum Dev 86: 143–148

    Article  PubMed  Google Scholar 

  17. Saavedra JM, Harris GD, Li S, Finberg L (1991) Capillary refilling (skin turgor) in the assessment of dehydration. Am J Dis Child 145: 296–298

    PubMed  CAS  Google Scholar 

  18. Mackenzie A, Shann F, Barnes G (1989) Clinical signs of dehydration in children. Lancet 2: 1529–1530

    Article  PubMed  CAS  Google Scholar 

  19. Tibby SM, Hatherill M, Murdoch IA (1999) Capillary refill and core-peripheral temperature gap as indicators of haemodynamic status in paediatric intensive care patients. Arch Dis Child 80: 163–166

    Article  PubMed  CAS  Google Scholar 

  20. Levy B (2006) Lactate and shock state: the metabolic view. Curr Opin Crit Care 12: 315–321

    Article  PubMed  Google Scholar 

  21. Fall PJ, Szerlip HM (2005) Lactic acidosis: from sour milk to septic shock. Journal of intensive care medicine 20: 255–271

    Article  PubMed  Google Scholar 

  22. Hatherill M, Waggie Z, Purves L, Reynolds L, Argent A (2003) Mortality and the nature of metabolic acidosis in children with shock. Intensive Care Med 29: 286–291

    Article  PubMed  Google Scholar 

  23. Marik PE (2006) Sublingual capnometry: a non-invasive measure of microcirculatory dysfunction and tissue hypoxia. Physiol Meas 27: R37–47

    Article  PubMed  Google Scholar 

  24. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL (2006) Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med 32: 516–523

    Article  PubMed  Google Scholar 

  25. Fries M, Weil MH, Sun S, et al (2006) Increases in tissue Pco2 during circulatory shock reflect selective decreases in capillary blood flow. Crit Care Med 34: 446–452

    Article  PubMed  CAS  Google Scholar 

  26. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365: 871–875

    Article  PubMed  CAS  Google Scholar 

  27. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32: 1825–1831

    Article  PubMed  Google Scholar 

  28. Trzeciak S, Rivers EP (2005) Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care 9(Suppl 4): S20–26

    Article  PubMed  Google Scholar 

  29. Spronk PE, Zandstra DF, Ince C (2004) Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care 8: 462–468

    Article  PubMed  Google Scholar 

  30. Trzeciak S, Dellinger RP, Parrillo JE, et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49: 88–98

    Article  PubMed  Google Scholar 

  31. Guyton AC, Carrier O, Jr., Walker JR (1964) Evidence for Tissue Oxygen Demand as the Major Factor Causing Autoregulation. Circ Res 15(suppl): 60–69

    PubMed  Google Scholar 

  32. LeDoux D, Astiz ME, Carpati CM, Rackow EC: (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–2732

    Article  PubMed  CAS  Google Scholar 

  33. Weil MH, Tang W (2007) Welcoming a new era of hemodynamic monitoring: expanding from the macro to the microcirculation. Crit Care Med 35: 1204–1205

    Article  PubMed  Google Scholar 

  34. Fagrell B, Intaglietta M (1997) Microcirculation: its significance in clinical and molecular medicine. J Intern Med 241: 349–362

    Article  PubMed  CAS  Google Scholar 

  35. Slaaf DW, Tangelder GJ, Reneman RS, Jager K, Bollinger A (1987) A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp 6: 391–397

    PubMed  CAS  Google Scholar 

  36. Groner W, Winkelman JW, Harris AG, et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5: 1209–1212

    Article  PubMed  CAS  Google Scholar 

  37. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15: 15101–15114

    Article  PubMed  CAS  Google Scholar 

  38. Sherman H, Klausner S, Cook WA (1971) Incident dark-field illumination: a new method for microcirculatory study. Angiology 22: 295–303

    Article  PubMed  CAS  Google Scholar 

  39. Balestra GM, Bezemer R, Boerma EC, et al (2010) Improvement of sidestream dark field imaging with an image acquisition stabilizer. BMC Med Imaging 10: 15

    Article  PubMed  Google Scholar 

  40. Harris AG, Sinitsina I, Messmer K (2002) Validation of OPS imaging for microvascular measurements during isovolumic hemodilution and low hematocrits. Am J Physiol Heart Circ Physiol 282: H1502–1509

    PubMed  CAS  Google Scholar 

  41. Langer S, Biberthaler P, Harris AG, Steinau HU, Messmer K (2001) In vivo monitoring of microvessels in skin flaps: introduction of a novel technique. Microsurgery 21: 317–324

    Article  PubMed  CAS  Google Scholar 

  42. Langer S, Born F, Hatz R, Biberthaler P, Messmer K (2002) Orthogonal polarization spectral imaging versus intravital fluorescent microscopy for microvascular studies in wounds. Ann Plastic Surg 48: 646–653

    Article  CAS  Google Scholar 

  43. Langer S, Harris AG, Biberthaler P, von Dobschuetz E, Messmer K (2001) Orthogonal polarization spectral imaging as a tool for the assessment of hepatic microcirculation: a validation study. Transplantation 71: 1249–1256

    Article  PubMed  CAS  Google Scholar 

  44. Mathura KR, Vollebregt KC, Boer K, De Graaff JC, Ubbink DT, Ince C (2001) Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91: 74–78

    PubMed  CAS  Google Scholar 

  45. De Backer D, Hollenberg S, Boerma C, et al (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11: R101

    Article  PubMed  Google Scholar 

  46. Boerma EC, Mathura KR, van der Voort PH, Spronk PE, Ince C (2005) Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care 9: R601–606

    Article  PubMed  Google Scholar 

  47. Dobbe JG, Streekstra GJ, Atasever B, van Zijderveld R, Ince C (2008) Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput 46: 659–670

    Article  PubMed  CAS  Google Scholar 

  48. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104

    Article  PubMed  Google Scholar 

  49. Top AP, van Dijk M, van Velzen JE, Ince C, Tibboel D (2010) Functional capillary density decreases after the first week of life in term neonates. Neonatology 99: 73–77

    Article  PubMed  Google Scholar 

  50. Beinder E, Trojan A, Bucher HU, Huch A, Huch R (1994) Control of skin blood flow in pre-and full-term infants. Biol Neonate 65: 7–15

    Article  PubMed  CAS  Google Scholar 

  51. Norman M, Herin P, Fagrell B, Zetterstrom R (1988) Capillary blood cell velocity in full-term infants as determined in skin by videophotometric microscopy. Pediatr Res 23: 585–588

    Article  PubMed  CAS  Google Scholar 

  52. Jahnukainen T, Lindqvist A, Jalonen J, Kero P, Valimaki I (1996) Reactivity of skin blood flow and heart rate to thermal stimulation in infants during the first postnatal days and after a two-month follow-up. Acta Paediatr 85: 733–738

    Article  PubMed  CAS  Google Scholar 

  53. Genzel-Boroviczeny O, Strotgen J, Harris AG, Messmer K, Christ F (2002) Orthogonal polarization spectral imaging (OPS): a novel method to measure the microcirculation in term and preterm infants transcutaneously. Pediatr Res 51: 386–391

    Article  PubMed  Google Scholar 

  54. Genzel-Boroviczeny O, Christ F, Glas V (2004) Blood transfusion increases functional capillary density in the skin of anemic preterm infants. Pediatr Res 56: 751–755

    Article  PubMed  Google Scholar 

  55. Kroth J, Weidlich K, Hiedl S, Nussbaum C, Christ F, Genzel-boroviczeny O (2008) Functional vessel density in the first month of life in preterm neonates. Pediatr Res 64: 567–571

    Article  PubMed  Google Scholar 

  56. Hiedl S, Schwepcke A, Weber F, Genzel-Boroviczeny O (2010) Microcirculation in preterm infants: profound effects of patent ductus arteriosus. J Pediatr 156: 191–196

    Article  PubMed  Google Scholar 

  57. Top AP, Ince C, van Dijk M, Tibboel D (2009) Changes in buccal microcirculation following extracorporeal membrane oxygenation in term neonates with severe respiratory failure. Crit Care Med 37: 1121–1124

    Article  PubMed  CAS  Google Scholar 

  58. Weidlich K, Kroth J, Nussbaum C, Hiedl S, Bauer A, Christ F, Genzel-Boroviczeny O (2009) Changes in microcirculation as early markers for infection in preterm infants-an observational prospective study. Pediatr Res 66: 461–465

    Article  PubMed  Google Scholar 

  59. Top AP, Ince C, de Meij N, van Dijk M, Tibboel D (2011) Persistent low microcirculatory vessel density in non-survivors of sepsis in pediatric intensive care. Crit Care Med 39: 8–13

    Article  PubMed  Google Scholar 

  60. Top AP, Ince C, Schouwenberg PH, Tibboel D (2011) Inhaled nitric oxide improves systemic microcirculation in infants with hypoxemic respiratory failure. Pediatr Crit Care Med (in press)

    Google Scholar 

  61. Perera P, Kurban K, Ryan TJ (1970) The development of the cutaneous microvascular system in the newborn. Br J Dermatology 82(S5): 86–91

    Article  Google Scholar 

  62. Stopfkuchen H (1987) Changes of the cardiovascular system during the perinatal period. Eur J Pediatr 146: 545–549

    Article  PubMed  CAS  Google Scholar 

  63. Trzeciak S, McCoy JV, Dellinger RP, et al (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34: 2210–2217

    Article  PubMed  Google Scholar 

  64. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147: 91–99

    Article  PubMed  Google Scholar 

  65. Jhanji S, Lee C, Watson D, Hinds C, Pearse RM (2009) Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med 35: 671–677

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Top, A.P.C., Tasker, R.C., Ince, C. (2011). The Microcirculation of the Critically III Pediatric Patient. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2011. Annual Update in Intensive Care and Emergency Medicine 2011, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18081-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18081-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18080-4

  • Online ISBN: 978-3-642-18081-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics