Skip to main content

Gibt es primzahldefinierende Funktionen?

  • Chapter
  • First Online:
Die Welt der Primzahlen

Part of the book series: Springer-Lehrbuch ((SLB))

  • 3303 Accesses

Zusammenfassung

Die Untersuchung von Primzahlen wirft die Frage auf, ob es nicht einfach berechenbare Funktionen f(n) gibt, die für alle natürlichen Zahlen n definiert sind und einige oder alle Primzahlen produzieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • 1912 Frobenius, F.G. Über quadratische Formen, die viele Primzahlen darstellen. Sitzungsber. d. Königl. Akad. d. Wiss. zu Berlin, 1912, 966–980. Nachdruck in Gesammelte Abhandlungen, Bd. III, 573–587. Springer-Verlag, Berlin 1968.

    Google Scholar 

  • 1912 Rabinowitsch, G. Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. Proc. Fifth Intern. Congress Math., Cambridge, Bd. 1, 1912, 418–421.

    Google Scholar 

  • 1933 Lehmer, D.H. On imaginary quadratic fields whose class number is unity. Bull. Amer. Math. Soc. 39 (1933), S. 360.

    Google Scholar 

  • 1934 Heilbronn, H. & Linfoot, E.H. On the imaginary quadratic corpora of class-number one. Quart. J. Pure and Appl. Math., Oxford, (2) 5 (1934), 293–301.

    Google Scholar 

  • 1936 Lehmer, D.H. On the function x 2 + x + A. Sphinx 6 (1936), 212–214.

    Google Scholar 

  • 1938 Skolem, T. Diophantische Gleichungen. Springer-Verlag, Berlin 1938.

    MATH  Google Scholar 

  • 1947 Mills, W.H. A prime-representing function. Bull. Amer. Math. Soc. 53 (1947), S. 604.

    Article  MATH  MathSciNet  Google Scholar 

  • 1951 van der Pol, B. & Speziali, P. The primes in k(ζ). Indag. Math. 13 (1951), 9–15.

    Google Scholar 

  • 1951 Wright, E.M. A prime-representing function. Amer. Math. Monthly 58 (1951), 616–618.

    Article  MATH  MathSciNet  Google Scholar 

  • 1952 Heegner, K. Diophantische Analysis und Modulfunktionen. Math. Zeitschrift 56 (1952), 227–253.

    Article  MATH  MathSciNet  Google Scholar 

  • 1960 Putnam, H. An unsolvable problem in number theory. J. Symb. Logic 25 (1960), 220–232.

    Article  MathSciNet  Google Scholar 

  • 1962 Cohn, H. Advanced Number Theory. J. Wiley and Sons, New York 1962. Nachdruck bei Dover, New York 1980.

    Google Scholar 

  • 1964 Willans, C.P. On formulae for the nth prime. Math. Gazette 48 (1964), 413–415.

    Article  MATH  MathSciNet  Google Scholar 

  • 1966 Baker, A. Linear forms in the logarithms of algebraic numbers. Mathematika 13 (1966), 204–216.

    Article  Google Scholar 

  • 1967 Stark, H.M. A complete determination of the complex quadratic fields of class-number one. Michigan Math. J. 14 (1967), 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  • 1968 Deuring, M. Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins. Invent. Math. 5 (1968), 169–179.

    Article  MATH  MathSciNet  Google Scholar 

  • 1969 Dudley, U. History of a formula for primes. Amer. Math. Monthly 76 (1969), 23–28.

    Article  MATH  MathSciNet  Google Scholar 

  • 1969 Stark, H.M. A historical note on complex quadratic fields with class-number one. Proc. Amer. Math. Soc. 21 (1969), 254–255.

    MATH  MathSciNet  Google Scholar 

  • 1971 Baker, A. Imaginary quadratic fields with class number 2. Annals of Math. (2) 94 (1971), 139–152.

    Article  Google Scholar 

  • 1971 Baker, A. On the class number of imaginary quadratic fields. Bull. Amer. Math. Soc. 77 (1971), 678–684.

    Article  MATH  MathSciNet  Google Scholar 

  • 1971 Gandhi, J.M. Formulae for the nth prime. Proc. Washington State Univ. Conf. on Number Theory, 96–106. Pullman, WA 1971.

    Google Scholar 

  • 1971 Matijasevič, Yu.V. Diophantine representation of the set of prime numbers (russisch). Dokl. Akad. Nauk SSSR 196 (1971), 770–773. Englische übersetzung von R.N. Goss, Soviet Math. Dokl. 12 (1971), 354–358.

    Google Scholar 

  • 1971 Stark, H.M. A transcendence theorem for class-number problems. Annals of Math. (2) 94 (1971), 153–173.

    Article  Google Scholar 

  • 1972 Vanden Eynden, C. A proof of Gandhi’s formula for the nth prime. Amer. Math. Monthly 79 (1972), S. 625.

    Article  MATH  MathSciNet  Google Scholar 

  • 1973 Davis, M. Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly 80 (1973), 233–269.

    Article  MATH  MathSciNet  Google Scholar 

  • 1973 Karst, E. New quadratic forms with high density of primes. Elem. Math. 28 (1973), 116–118.

    MATH  MathSciNet  Google Scholar 

  • 1973 Weinberger, P.J. Exponents of the class groups of complex quadratic fields. Acta Arith. 22 (1973), 117–124.

    MATH  MathSciNet  Google Scholar 

  • 1974 Golomb, S.W. A direct interpretation of Gandhi’s formula. Amer. Math. Monthly 81 (1974), 752–754.

    Article  MATH  MathSciNet  Google Scholar 

  • 1974 Hendy, M.D. Prime quadratics associated with complex quadratic fields of class number two. Proc. Amer. Math. Soc. 43 (1974), 253–260.

    Article  MATH  MathSciNet  Google Scholar 

  • 1974 Montgomery, H.L. & Weinberger, P.J. Notes on small class numbers. Acta Arith. 24 (1974), 529–542.

    MATH  MathSciNet  Google Scholar 

  • 1974 Szekeres, G. On the number of divisors of x 2+x+A. J. Number Theory 6 (1974), 434–442.

    Article  MATH  MathSciNet  Google Scholar 

  • 1975 Ernvall, R. A formula for the least prime greater than a given integer. Elem. Math. 30 (1975), 13–14.

    MATH  MathSciNet  Google Scholar 

  • 1975 Jones, J.P. Diophantine representation of the Fibonacci numbers. Fibonacci Quart. 13 (1975), 84–88.

    MATH  MathSciNet  Google Scholar 

  • 1975 Matijasevič, Yu.V. & Robinson, J. Reduction of an arbitrary diophantine equation to one in 13 unknowns. Acta Arith. 27 (1975), 521–553.

    MATH  MathSciNet  Google Scholar 

  • 1976 Jones, J.P., Sato, D., Wada, H. & Wiens, D. Diophantine representation of the set of prime numbers. Amer. Math. Monthly 83 (1976), 449–464.

    Article  MATH  MathSciNet  Google Scholar 

  • 1977 Goldfeld, D.M. The conjectures of Birch and Swinnerton-Dyer and the class numbers of quadratic fields. Astérisque 41/42 (1977), 219–227.

    MathSciNet  Google Scholar 

  • 1977 Matijasevič, Yu.V. Primes are nonnegative values of a polynomial in 10 variables (russisch). Zapiski Sem. Leningrad Mat. Inst. Steklov 68 (1977), 62–82. Englische übersetzung von L. Guy und J.P. Jones, J. Soviet Math. 15 (1981), 33–44.

    Google Scholar 

  • 1979 Jones, J.P. Diophantine representation of Mersenne and Fermat primes, Acta Arith. 35 (1979), 209–221.

    MATH  MathSciNet  Google Scholar 

  • 1981 Ayoub, R.G. & Chowla, S. On Euler’s polynomial. J. Number Theory 13 (1981), 443–445.

    Article  MATH  MathSciNet  Google Scholar 

  • 1983 Gross, B.H. & Zagier, D. Points de Heegner et dérivées de fonctions L. C.R. Acad. Sci. Paris 297 (1983), 85–87.

    MATH  MathSciNet  Google Scholar 

  • 1986 Gross, B.H. & Zagier, D.B. Heegner points and derivatives of L-series. Invent. Math. 84 (1986), 225–320.

    Article  MATH  MathSciNet  Google Scholar 

  • 1986 Sasaki, R. On a lower bound for the class number of an imaginary quadratic field. Proc. Japan Acad. A (Math. Sci.) 62 (1986), 37–39.

    Article  MATH  Google Scholar 

  • 1986 Sasaki, R. A characterization of certain real quadratic fields. Proc. Japan Acad. A (Math. Sci.) 62 (1986), 97–100.

    Article  MATH  Google Scholar 

  • 1988 Ribenboim, P. Euler’s famous prime generating polynomial and the class number of imaginary quadratic fields. L'Enseign. Math. 34 (1988), 23–42.

    MATH  MathSciNet  Google Scholar 

  • 1989 Flath, D.E. Introduction to Number Theory. Wiley-Interscience, New York 1989.

    MATH  Google Scholar 

  • 1989 Goetgheluck, P. On cubic polynomials giving many primes. Elem. Math. 44 (1989), 70–73.

    MATH  MathSciNet  Google Scholar 

  • 1990 Louboutin, S. Prime producing quadratic polynomials and class-numbers of real quadratic fields, and Addendum. Can. J. Math. 42 (1990), 315–341 und S. 1131.

    Article  MATH  MathSciNet  Google Scholar 

  • 1991 Louboutin, S. Extensions du théorème de Frobenius-Rabinovitsch. C.R. Acad. Sci. Paris 312 (1991), 711–714.

    MATH  MathSciNet  Google Scholar 

  • 1995 Boston, N. & Greenwood, M.L. Quadratics representing primes. Amer. Math. Monthly 102 (1995), 595–599.

    Article  MATH  MathSciNet  Google Scholar 

  • 1995 Lukes, R.F., Patterson, C.D. & Williams, H.C. Numerical sieving devices: Their history and applications. Nieuw Arch. Wisk. (4) 13 (1995), 113–139.

    MATH  MathSciNet  Google Scholar 

  • 1996 Mollin, R.A. Quadratics. CRC Press, Boca Raton, FL 1996.

    MATH  Google Scholar 

  • 1996 Mollin, R.A. An elementary proof of the Rabinowitsch-Mollin- Williams criterion for real quadratic fields. J. Math. Sci. 7 (1996), 17–27.

    MathSciNet  Google Scholar 

  • 1997 Mollin, R.A. Prime-producing quadratics. Amer. Math. Monthly 104 (1997), 529–544.

    Article  MATH  MathSciNet  Google Scholar 

  • 2000 Ribenboim, P. My Numbers, My Friends. Springer-Verlag, New York 2000. Deutsche Übersetzung bei Springer, Berlin und Heidelberg 2009.

    MATH  Google Scholar 

  • 2003 Dress, F. & Landreau, B. Polynômes prenant beaucoup de valeurs premières. Unveröffentlichtes Manuskript.

    Google Scholar 

  • 2003 Jacobson Jr., M.J. & Williams, H.C. New quadratic polynomials with high densities of prime values. Math. Comp. 72 (2003), 499–519.

    Article  MATH  MathSciNet  Google Scholar 

  • 2005 Caldwell, C. & Cheng, Y. Determining Mills’ constant and a note on Honaker’s Problem. J. Integer Seq. 8 (2005), Art. 05.4.1, 1–9 (elektronisch).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribenboim, P. (2011). Gibt es primzahldefinierende Funktionen?. In: Die Welt der Primzahlen. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18079-8_3

Download citation

Publish with us

Policies and ethics