Skip to main content

Labeling of Oligohistidine-Tagged Proteins

  • Chapter
  • First Online:

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 113))

Abstract

Complexation of Histidine residues by chelated transition metal ions can be exploited for noncovalent, reversible labeling of His-tagged proteins. While the affinity of individual transition metal ions complexed by nitrilotriacetic acid (NTA) is not sufficient for stable fluorescence labeling, this problem has been overcome by multivalent NTA, which bind His-tagged proteins with subnanomolar affinity and complex lifetimes of >1 h. Selective labeling with a defined stoichiometry is possible in cell lysates and on the surface of living cells. Thus, rapid labeling in situ with these relatively small probes at low concentration is possible, which can be reversed under mild conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ueda EK, Gout PW, Morganti L (2003) Current and prospective applications of metal ion-protein binding. J Chromatogr A 988:1–23

    Article  CAS  Google Scholar 

  2. Lata S, Reichel A, Brock R, Tampé R, Piehler J (2005) High-affinity adaptors for switchable recognition of histidine-tagged proteins. J Am Chem Soc 127:10205–10215

    Article  CAS  Google Scholar 

  3. Guignet EG, Hovius R, Vogel H (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22:440–444

    Article  CAS  Google Scholar 

  4. Goldsmith CR, Jaworski J, Sheng M, Lippard SJ (2006) Selective labeling of extracellular proteins containing polyhistidine sequences by a fluorescein-nitrilotriacetic acid conjugate. J Am Chem Soc 128:418–419

    Article  CAS  Google Scholar 

  5. Peneva K, Mihov G, Herrmann A, Zarrabi N, Borsch M, Duncan TM, Mullen K (2008) Exploiting the nitrilotriacetic acid moiety for biolabeling with ultrastable perylene dyes. J Am Chem Soc 130:5398–5399

    Article  CAS  Google Scholar 

  6. Soh N, Seto D, Nakano K, Imato T (2006) Methodology of reversible protein labeling for ratiometric fluorescent measurement. Mol Biosyst 2:128–131

    Article  CAS  Google Scholar 

  7. Guignet EG, Segura JM, Hovius R, Vogel H (2007) Repetitive reversible labeling of proteins at polyhistidine sequences for single-molecule imaging in live cells. Chemphyschem 8:1221–1227

    Article  CAS  Google Scholar 

  8. Kapanidis AN, Ebright YW, Ebright RH (2001) Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates. J Am Chem Soc 123:12123–12125

    Article  CAS  Google Scholar 

  9. Hauser CT, Tsien RY (2007) A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure. Proc Natl Acad Sci USA 104:3693–3697

    Article  CAS  Google Scholar 

  10. Spagnuolo C, Joselevich M, Leskow CF, Jares-Erijman EA (2010) Tetracysteine and bipartite tags for biarsenical organic fluorophores. In: Demchenko A (ed) Fluorescence reporters in chemistry and biology III: methods and applications. Springer Series on Fluorescence 10. Springer, Heidelberg, pp 263–295

    Google Scholar 

  11. Huang Z, Park JI, Watson DS, Hwang P, Szoka FC Jr (2006) Facile synthesis of multivalent nitrilotriacetic acid (NTA) and NTA conjugates for analytical and drug delivery applications. Bioconjug Chem 17:1592–1600

    Article  CAS  Google Scholar 

  12. Lata S, Piehler J (2005) Stable and functional immobilization of histidine-tagged proteins via multivalent chelator head-groups on a molecular poly(ethylene glycol) brush. Anal Chem 77:1096–1105

    Article  CAS  Google Scholar 

  13. Lata S, Gavutis M, Tampé R, Piehler J (2006) Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. J Am Chem Soc 128:2365–2372

    Article  CAS  Google Scholar 

  14. van der Does C, Presenti C, Schulze K, Dinkelaker S, Tampe R (2006) Kinetics of the ATP hydrolysis cycle of the nucleotide-binding domain of Mdl1 studied by a novel site-specific labeling technique. J Biol Chem 281:5694–5701

    Article  Google Scholar 

  15. Strunk JJ, Gregor I, Becker Y, Li Z, Gavutis M, Jaks E, Lamken P, Walz T, Enderlein J, Piehler J (2008) Ligand binding induces a conformational change in ifnar1 that is propagated to its membrane-proximal domain. J Mol Biol 377:725–739

    Article  CAS  Google Scholar 

  16. Wruss J, Pollheimer PD, Meindl I, Reichel A, Schulze K, Schofberger W, Piehler J, Tampe R, Blaas D, Gruber HJ (2009) Conformation of receptor adopted upon interaction with virus revealed by site-specific fluorescence quenchers and FRET analysis. J Am Chem Soc 131:5478–5482

    Article  CAS  Google Scholar 

  17. Cheng-Chih Hsieh, Mei-Lin Ho, Pi-Tai Chou (2010) Organic dyes with excited-state transformations (electron, charge, and proton transfers). In: Demchenko A (ed) Advanced fluorescence reporters in chemistry and biology I: fundamentals and molecular design. Springer Series on Fluorescence 8. Springer, Heidelberg, pp 225–266

    Google Scholar 

  18. DeRocco VC, Anderson T, Piehler J, Erie DA, Weninger K (2010) Four-color single molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes. Biotechniques 49:807–816

    Article  CAS  Google Scholar 

  19. Giannone G, Hosy E, Levet F, Constals A, Schulze K, Sobolevsky AI, Rosconi MP, Gouaux E, Tampe R, Choquet D et al (2010) Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 99:1303–1310

    Article  CAS  Google Scholar 

  20. Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall LF, Schmidt MM, Wittrup KD, Bawendi MG, Ting AY (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5:397–399

    Article  CAS  Google Scholar 

  21. Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130:1274–1284

    Article  CAS  Google Scholar 

  22. Sapsford KE, Pons T, Medintz IL, Higashiya S, Brunel FM, Dawson PE, Mattoussi H (2007) Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots. J Phys Chem C 111:11528–11538

    Article  CAS  Google Scholar 

  23. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5:581–589

    Article  CAS  Google Scholar 

  24. Kim J, Park HY, Ryu J, Kwon do Y, Grailhe R, Song R (2008) Ni-nitrilotriacetic acid-modified quantum dots as a site-specific labeling agent of histidine-tagged proteins in live cells. Chem Commun 1910–1912

    Google Scholar 

  25. Gupta M, Caniard A, Touceda-Varela A, Campopiano DJ, Mareque-Rivas JC (2008) Nitrilotriacetic acid-derivatized quantum dots for simple purification and site-selective fluorescent labeling of active proteins in a single step. Bioconjug Chem 19:1964–1967

    Article  CAS  Google Scholar 

  26. Reichel A, Schaible D, Al Furoukh N, Cohen M, Schreiber G, Piehler J (2007) Noncovalent, site-specific biotinylation of histidine-tagged proteins. Anal Chem 79:8590–8600

    Article  CAS  Google Scholar 

  27. Roullier V, Clarke S, You C, Pinaud F, Gouzer GG, Schaible D, Marchi-Artzner V, Piehler J, Dahan M (2009) High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ tris-nitrilotriacetic acid quantum dot conjugates. Nano Lett 9:1228–1234

    Article  CAS  Google Scholar 

  28. You C, Wilmes S, Beutel O, Lochte S, Podoplelowa Y, Roder F, Richter C, Seine T, Schaible D, Uze G et al (2010) Self-controlled monofunctionalization of quantum dots for multiplexed protein tracking in live cells. Angew Chem Int Ed Engl 49:4108–4112

    CAS  Google Scholar 

  29. Plass T, Schultz C (2010) Covalent labeling of biomolecules in living cells. In: Demchenko A (ed) Fluorescence reporters in chemistry and biology III: methods and applications. Springer Series on Fluorescence 10. Springer, Heidelberg, pp 225–261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Piehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piehler, J. (2011). Labeling of Oligohistidine-Tagged Proteins. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology III. Springer Series on Fluorescence, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18035-4_9

Download citation

Publish with us

Policies and ethics