Skip to main content

Covalent Labeling of Biomolecules in Living Cells

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology III

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 113))

Abstract

Putting fluorescent and other labels on proteins and small molecules in living cells is an important tool for studying cell biology and developing drugs. The required chemical reactions need to be bioorthogonal to produce selectivity. Here, we summarize currently used bioorthogonal reactions that have been successfully applied for labeling biomolecules in cells. Further, we discuss the various methods available to include orthogonally reactive groups into proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    CAS  Google Scholar 

  2. Lim RKV, Lin Q (2010) Bioorthogonal chemistry: recent progress and future directions. Chem Commun 46:1589–1600

    CAS  Google Scholar 

  3. Sander EG, Jencks WP (1968) Equilibria for additions to the carbonyl group. J Am Chem Soc 90:6154–6162

    CAS  Google Scholar 

  4. Mahal LK, Yarema KJ, Bertozzi CR (1997) Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276:1125–1128

    CAS  Google Scholar 

  5. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    CAS  Google Scholar 

  6. Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430:873–877

    CAS  Google Scholar 

  7. Huisgen R (1963) 1, 3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed Engl 2:565–598

    Google Scholar 

  8. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599

    CAS  Google Scholar 

  9. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1–3]-triazoles by regiospecific copper(I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    CAS  Google Scholar 

  10. Neef AB, Schultz C (2009) Selective fluorescence labeling of lipids in living cells. Angew Chem Int Ed 48:1498–1500

    CAS  Google Scholar 

  11. Jao CY, Roth M, Welti R, Salic A (2009) Metabolic labeling and direct imaging of choline phospholipids in vivo. Proc Natl Acad Sci USA 106:15332–15337

    CAS  Google Scholar 

  12. Bruckman MA, Kaur G, Lee LA, Xie F, Sepulvecla J, Breitenkamp R, Zhang X, Joralemon M, Russell TP, Emrick T, Wang Q (2008) Surface modification of tobacco mosaic virus with “click” chemistry. Chembiochem 9:519–523

    CAS  Google Scholar 

  13. Deiters A, Cropp TA, Mukherji M, Chin JW, Anderson C, Schultz PG (2003) Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J Am Chem Soc 125:11782–11783

    CAS  Google Scholar 

  14. Link AJ, Tirrell DA (2003) Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J Am Chem Soc 125:11164–11165

    CAS  Google Scholar 

  15. Weisbrod SH, Marx A (2008) Novel strategies for the site-specific covalent labelling of nucleic acids. Chem Commun 5675–5685

    Google Scholar 

  16. Hüsken N, Gasser G, Köster SD, Metzler-Nolte N (2009) “Four-potential” ferrocene labeling of PNA oligomers via click chemistry. Bioconjug Chem 20:1578–1586

    Google Scholar 

  17. Speers AE, Adam GC, Cravatt BF (2003) Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 125:4686–4687

    CAS  Google Scholar 

  18. Becer CR, Hoogenboom R, Schubert US (2009) Click chemistry beyond metal-catalyzed cycloaddition. Angew Chem Int Ed 48:4900–4908

    CAS  Google Scholar 

  19. Chang PV, Prescher JA, Sletten EM, Baskin JM, Miller IA, Agard NJ, Lo A, Bertozzi CR (2010) Copper-free click chemistry in living animals. Proc Natl Acad Sci USA 107:1821–1826

    CAS  Google Scholar 

  20. Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1:644–648

    CAS  Google Scholar 

  21. Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130:13518–13519

    CAS  Google Scholar 

  22. Devaraj NK, Weissleder R, Hilderbrand SA (2008) Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug Chem 19:2297–2299

    CAS  Google Scholar 

  23. Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R (2010) Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew Chem Int Ed 49:2869–2872

    CAS  Google Scholar 

  24. Devaraj NK, Upadhyay R, Haun JB, Hilderbrand SA, Weissleder R (2009) Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew Chem Int Ed 48:7013–7016

    CAS  Google Scholar 

  25. Wang Y, Rivera Vera CI, Lin Q (2007) Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1, 3-dipolar cycloaddition. Org Lett 9:4155–4158

    CAS  Google Scholar 

  26. Song W, Wang Y, Qu J, Lin Q (2008) Selective functionalization of a genetically encoded alkene-containing protein via “photoclick chemistry” in bacterial cells. J Am Chem Soc 130:9654–9655

    CAS  Google Scholar 

  27. Lin YA, Chalker JM, Floyd N, Bernardes GJL, Davis BG (2008) Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. J Am Chem Soc 130:9642–9643

    CAS  Google Scholar 

  28. Lin YA, Chalker JM, Floyd N, Bernardes GJL, Davis BG (2009) A Convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling. J Am Chem Soc 131:16346–16347

    CAS  Google Scholar 

  29. Ning X, Temming RP, Dommerholt J, Guo J, Ania DB, Debets MF, Wolfert MA, Boons GJ, van Delft FL (2010) Protein modification by strain-promoted alkyne-nitrone cycloaddition. Angew Chem Int Ed 49:3065–3068

    CAS  Google Scholar 

  30. Muir TW (2009) Chemical biology in a time of transition. ACS Chem Biol 4:241–243

    CAS  Google Scholar 

  31. Dawson PE, Muir TW, Clarklewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    CAS  Google Scholar 

  32. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998

    CAS  Google Scholar 

  33. Muir TW (2008) Studying protein structure and function using semisynthesis. Biopolymers 9:743–750

    Google Scholar 

  34. Chatterjee C, Muir TW (2010) Chemical approaches for studying histone modifications. J Biol Chem 285:11045–11050

    CAS  Google Scholar 

  35. Karukurichi KR, Wang L, Uzasci L, Manlandro CM, Wang Q, Cole PA (2010) Analysis of p300/CBP histone acetyltransferase regulation using circular permutation and semisynthesis. J Am Chem Soc 132:1222–1223

    CAS  Google Scholar 

  36. McGinty RK, Chatterjee C, Muir TW (2009) Semisynthesis of ubiquitylated proteins. Methods Enzymol 462:225–243

    CAS  Google Scholar 

  37. Bayley H, Cheley S, Harrington L, Syeda R (2009) Wrestling with native chemical ligation. ACS Chem Biol 4:983–985

    CAS  Google Scholar 

  38. Gottlieb D, Grunwald C, Nowak C, Kuhlmann J, Waldmann H (2006) Intein-mediated in vitro synthesis of lipidated Ras proteins. Chem Commun 260–262

    Google Scholar 

  39. Durek T, Alexandrov K, Goody RS, Hildebrand A, Heinemann I, Waldmann H (2004) Synthesis of fluorescently labeled mono- and diprenylated Rab7 GTPase. J Am Chem Soc 126:16368–16378

    CAS  Google Scholar 

  40. Camarero JA, Fushman D, Cowburn D, Muir TW (2001) Peptide chemical ligation inside living cells: in vivo generation of a circular protein domain. Bioorg Med Chem 9:2479–2484

    CAS  Google Scholar 

  41. Daly NL, Love S, Alewood PF, Craik DJ (1999) Chemical synthesis and folding pathways of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1. Biochemistry 38:10606–10614

    CAS  Google Scholar 

  42. Ambrogelly A, Palioura S, Söll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3:29–35

    CAS  Google Scholar 

  43. Link AJ, Mock ML, Tirrell DA (2003) Non-canonical amino acids in protein engineering. Curr Opin Biotechnol 14:603–609

    CAS  Google Scholar 

  44. Wang L, Schultz PG (2005) Expanding the genetic code. Angew Chem Int Ed 44:34–66

    CAS  Google Scholar 

  45. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    CAS  Google Scholar 

  46. Wu X, Schultz PG (2009) Synthesis at the interface of chemistry and biology. J Am Chem Soc 131:12497–12515

    CAS  Google Scholar 

  47. Hecht SM, Alford BL, Kuroda Y, Kitano S (1978) “Chemical aminoacylation” of tRNA’s. J Biol Chem 253:4517–4520

    CAS  Google Scholar 

  48. Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244:182–188

    CAS  Google Scholar 

  49. Saks ME, Sampson JR, Nowak MW, Kearney PC, Du F, Abelson JN, Lester HA, Dougherty DA (1996) An engineered Tetrahymena tRNAGln for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression. J Biol Chem 271:23169–23175

    CAS  Google Scholar 

  50. Kiick KL, van Hest JCM, Tirrell DA (2000) Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew Chem Int Ed 39:2148–2152

    CAS  Google Scholar 

  51. Hendrickson TL, de Crécy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147–176

    CAS  Google Scholar 

  52. Cohen GN, Munier R (1956) Incorporation of structural analogues of amino acids in bacterial proteins. Biochim Biophys Acta 21:592–593

    CAS  Google Scholar 

  53. Cowie DB, Cohen GN (1957) Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulphur. Biochim Biophys Acta 26:252–261

    CAS  Google Scholar 

  54. Beatty KE, Liu JC, Xie F, Dieterich DC, Schuman EM, Wang Q, Tirrell DA (2006) Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Ed 45:7364–7367

    CAS  Google Scholar 

  55. Datta D, Wang P, Carrico IS, Mayo SL, Tirrell DA (2002) A designed phenylalanyl-tRNA synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. J Am Chem Soc 124:5652–5653

    CAS  Google Scholar 

  56. Tanrikulu IC, Schmitt E, Mechulam Y, Goddard WA 3rd, Tirrell DA (2009) Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo. Proc Natl Acad Sci USA 106:15285–15290

    CAS  Google Scholar 

  57. Döring V, Mootz HD, Nangle LA, Hendrickson TL, de Crécy-Lagard V, Schimmel P, Marlière P (2001) Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science 292:501–504

    Google Scholar 

  58. Anthony-Cahill SJ, Griffith MC, Noren CJ, Suich DJ, Schultz PG (1989) Site-specific mutagenesis with unnatural amino acids. Trends Biochem Sci 14:400–403

    CAS  Google Scholar 

  59. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–444

    CAS  Google Scholar 

  60. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science. doi: 10.1126/science.1190719

    Google Scholar 

  61. Liu W, Brock A, Chen S, Chen S, Schultz PG (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4:239–244

    CAS  Google Scholar 

  62. Neumann H, Peak-Chew SY, Chin JW (2008) Genetically encoding Nε-acetyllysine in recombinant proteins. Nat Chem Biol 4:232–234

    CAS  Google Scholar 

  63. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Multistep engineering of pyrrolysyl-tRNA synthetases to genetically encode Nε-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem Biol 15:1187–1197

    CAS  Google Scholar 

  64. Nguyen DP, Lusic H, Neumann H, Kapadnis PB, Deiters A, Chin JW (2009) Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNACUA pair and click chemistry. J Am Chem Soc 131:8720–8721

    CAS  Google Scholar 

  65. Chen PR, Groff D, Guo J, Ou W, Cellitti S, Geierstanger BH, Schultz PG (2009) A facile system for encoding unnatural amino acids in mammalian cells. Angew Chem Int Ed 48:4052–4055

    CAS  Google Scholar 

  66. Neumann H, Slusarczyk AL, Chin JW (2010) De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. J Am Chem Soc 132:2142–2144

    CAS  Google Scholar 

  67. Wan W, Huang Y, Wang Z, Russell WK, Pai PJ, Russell DH, Liu WR (2010) A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew Chem Int Ed 49:3211–3214

    CAS  Google Scholar 

  68. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    CAS  Google Scholar 

  69. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    CAS  Google Scholar 

  70. Keppler A, Kindermann M, Gendreizig S, Pick H, Vogel H, Johnsson K (2004) Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32:437–444

    CAS  Google Scholar 

  71. Juillerat A, Heinis C, Sielaff I, Barnikow J, Jaccard H, Kunz B, Terskikh A, Johnsson K (2005) Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells. Chembiochem 6:1263–1269

    CAS  Google Scholar 

  72. Gronemeyer T, Chidley C, Juillerat A, Heinis C, Johnsson K (2006) Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Eng Des Select 19:309–316

    CAS  Google Scholar 

  73. Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci USA 101:9955–9959

    CAS  Google Scholar 

  74. Bannwarth M, Corrêa IR, Jr SM, Pouvreau S, Fellay C, Aebischer A, Royer L, Ríos E, Johnsson K (2009) Indo-1 derivatives for local calcium sensing. ACS Chem Biol 4:179–190

    CAS  Google Scholar 

  75. Heinis C, Schmitt S, Kindermann M, Godin G, Johnsson K (2006) Evolving the substrate specificity of O6-alkylguanine-DNA alkyltransferase through loop insertion for applications in molecular imaging. ACS Chem Biol 1:575–589

    CAS  Google Scholar 

  76. Gautier A, Juillerat A, Heinis C, Corrêa IR, Jr KM, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136

    CAS  Google Scholar 

  77. Gautier A, Nakata E, Lukinavičius G, Tan KT, Johnsson K (2009) Selective cross-linking of interacting proteins using self-labeling tags. J Am Chem Soc 131:17954–17962

    CAS  Google Scholar 

  78. Maurel D, Banala S, Laroche T, Johnsson K (2010) Photoactivatable and photoconvertible fluorescent probes for protein labeling. ACS Chem Biol 5:507–516

    CAS  Google Scholar 

  79. Los GV, Darzins A, Karassina N, Zimprich C, Learish R, McDougallM G, Encell LP, Friedman-Ohana R, Wood M, Vidurgiris G, Zimmerman K, Otto P, Klaubert DH, Wood KV (2005) Halotag interchangeable labeling technology for cell imaging and protein capture. Promega Cell Notes 11:2–6

    Google Scholar 

  80. Janssen DB (2004) Evolving haloalkane dehalogenase. Curr Opin Chem Biol 8:150–159

    CAS  Google Scholar 

  81. Pries F, Kingma J, Krooshof G, Jeronimus-Stratingh C, Bruins A, Janssen DB (1995) Histidine 289 is essential for hydrolysis of the alkyl-enzyme intermediate of haloalkane dehalogenase. J Biol Chem 270:10405–10411

    CAS  Google Scholar 

  82. Los G, Wood K (2007) The HaloTag: a novel technology for cell imaging and protein analysis. Methods Mol Biol 356:195–208

    CAS  Google Scholar 

  83. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Friedman-Ohana R, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. Chem Biol 3:373–383

    CAS  Google Scholar 

  84. Vivero-Pol L, George N, Krumm H, Johnsson K, Johnsson N (2005) J Am Chem Soc 127:12770–12771

    CAS  Google Scholar 

  85. George N, Pick H, Vogel H, Johnsson N, Johnsson K (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126:8896–8897

    CAS  Google Scholar 

  86. O’Hare HM, Johnsson K, Gautier A (2007) Chemical probes shed light on protein function. Curr Opin Struct Biol 17:488–494

    Google Scholar 

  87. Johnsson N, George N, Johnsson K (2005) Protein chemistry on the surface of living cells. Chembiochem 6:47–52

    CAS  Google Scholar 

  88. Yin J, Liu F, Walsh CT (2004) Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc 126:7754–7755

    CAS  Google Scholar 

  89. Bonasio R, Carman CV, Kim E, Sage PT, Love KR, Mempel TR, Springer TA, von Andrian UH (2007) Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc Natl Acad Sci USA 104:14753–14758

    CAS  Google Scholar 

  90. Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C (1996) Dynamics of fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants. Proteins 26:442–458

    CAS  Google Scholar 

  91. Lin MZ, Wang L (2008) Selective labeling of proteins with chemical probes in living cells. Physiology 23:131–141

    CAS  Google Scholar 

  92. Komatsu T, Kikuchi K, Takakusa H, Hanaoka K, Ueno T, Kamiya M, Urano Y, Nagano T (2006) Design and synthesis of an enzyme activity-based labeling molecule with fluorescence spectral change. J Am Chem Soc 128:15946–15947

    CAS  Google Scholar 

  93. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc 127:4888–4894

    CAS  Google Scholar 

  94. Chen I, Howarth M, Lin W, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2:99–104

    CAS  Google Scholar 

  95. Lin CW, Ting AY (2006) Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J Am Chem Soc 128:4542–4543

    CAS  Google Scholar 

  96. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929

    CAS  Google Scholar 

  97. Wolff C, Lai CS (1988) Evidence that the two amino termini of plasma fibronectin are in close proximity: a fluorescence energy transfer study. Biochemistry 27:3483–3487

    CAS  Google Scholar 

  98. Antos JM, Chew GL, Guimaraes CP, Yoder NC, Grotenbreg GM, Popp MW, Ploegh HL (2009) Site-specific N- and C-terminal labeling of a single polypeptide using sortases of different specificity. J Am Chem Soc 131:10800–10801

    CAS  Google Scholar 

  99. Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biotechnol 3:707–708

    CAS  Google Scholar 

  100. Fernández-Suárez M, Baruah H, Martínez-Hernández L, Xie KT, Baskin JM, Bertozzi CR, Ting AY (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 25:1483–1487

    Google Scholar 

  101. Uttamapinant C, White KA, Baruah H, Thompson S, Fernández-Suárez M, Puthenveetil S, Ting AY (2010) A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci USA 107:10914–10919

    CAS  Google Scholar 

  102. Mizukami S, Watanabe S, Hori Y, Kikuchi K (2009) Covalent protein labeling based on noncatalytic β-lactamase and a designed FRET substrate. J Am Chem Soc 131:5016–5017

    CAS  Google Scholar 

  103. Tully SE, Cravatt BF (2010) Activity-based probes that target functional subclasses of phospholipases in proteomes. J Am Chem Soc 132:3264–3265

    CAS  Google Scholar 

  104. Duckworth BP, Zhang Z, Hosokawa A, Distefano MD (2007) Selective labeling of proteins by using protein farnesyltransferase. Chembiochem 8:98–105

    CAS  Google Scholar 

  105. Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3:321–322

    CAS  Google Scholar 

  106. Tsukiji S, Miyagawa M, Takaoka Y, Tamura T, Hamachi I (2009) Ligand-directed tosyl chemistry for protein labeling in vivo. Nat Chem Biol 5:341–343

    CAS  Google Scholar 

  107. Hong V, Steinmetz NF, Manchester M, Finn MG (2010) Labeling live cells by copper-catalyzed alkyne-azide click chemistry. Bioconjugate Chem 21:1912–1916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schultz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plass, T., Schultz, C. (2011). Covalent Labeling of Biomolecules in Living Cells. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology III. Springer Series on Fluorescence, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18035-4_7

Download citation

Publish with us

Policies and ethics