Advertisement

Model Transformation Chains and Model Management for End-to-End Performance Decision Support

  • Mathias Fritzsche
  • Wasif Gilani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6491)

Abstract

The prototypical Model-Driven Performance Engineering (MDPE) Workbench from SAP Research permits multi-paradigm decision support for performance related questions in terms of what-if simulations, sensitivity analyses and optimizations. This support is beneficial if business analysts are designing new processes, modifying existing ones or optimizing processes. The functionality is provided as an extension of existing Process Modelling Tools, such as the tools employed by process environments like the jCOM! or the SAP NetWeaver Business Process Management (BPM) Suites as well as classical enterprise software like SAP Business Suite or Open ERP.

By evaluating our workbench for real world cases we experienced that business processes may span different environments, each employing different Process Modelling Tools. The presence of heterogeneous tools influences the end-to-end performance of the overall process. Thus, the MDPE Workbench essentially needs to take the complete process into account. In this paper, a model transformation chain and a model management architecture is explained to enable such functionality. This architecture combines results from our previous publications, outlines these results in more detail and explains them in the context of end-to-end processes. Furthermore, the work is evaluated with an industrial business process which spans three different Process Modelling Tools.

Keywords

Business Process Business Process Management Trace Model Business Process Modeling Notation Transformation Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fritzsche, M., Picht, M., Gilani, W., Spence, I., Brown, J., Kilpatrick, P.: Extending BPM Environments of your choice with Performance related Decision Support. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 97–112. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Fritzsche, M., Johannes, J., Assmann, U., Mitschke, S., Gilani, W., Spence, I., Brown, J., Kilpatrick, P.: Systematic usage of embedded modelling languages in automated model transformation chains. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 134–150. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Fritzsche, M., Johannes, J.: Putting Performance Engineering into Model-Driven Engineering: Model-Driven Performance Engineering. In: Giese, H. (ed.) MODELS 2007. LNCS, vol. 5002, pp. 164–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    XJ Technologies: AnyLogic — multi-paradigm simulation software (2009), http://www.xjtek.com/anylogic/
  5. 5.
    Franks, R.G.: PhD Thesis: Performance Analysis of Distributed Server Systems. Carlton University (1999)Google Scholar
  6. 6.
    Zorn, W.: FMC-QE: A new approach in quantitative modeling. In: Proceedings of the 2007 International Conference on Modeling, Simulation & Visualization Methods (MSV 2007), pp. 280–287. CSREA Press (2007)Google Scholar
  7. 7.
    Porzucek, T., Kluth, S., Fritzsche, M., Redlich, D.: Combination of a discrete event simulation and an analytical performance analysis through model-transformations. In: Proceedings of the International Conference and Workshop on the Engineering of Computer Based Systems (ECBS 2010), pp. 183–192. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  8. 8.
    Rogers, P.: Optimum-seeking simulation in the design and control of manufacturing systems: Experience with optquest for arena. In: Proceedings of the 2002 Winter Simulation Conference, WSC 2002 (2002)Google Scholar
  9. 9.
    Object Management Group: Business Process Modeling Notation Specification, Final Adopted Specification, Version 1.0 (2006), http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BPMN%201-0%20Spec%2006-02-01.pdf
  10. 10.
    jCOM1 AG: jpass! - subjektorientierte prozessmodellierung (2009), http://www.jcom1.com/cms/jpass.html
  11. 11.
    SAP AG: Sap solutions for small businesses and midsize companies (2009), http://www.sap.com/solutions/sme/businessbydesign/index.epx
  12. 12.
    SAP AG: Sap business suite - integrated enterprise applications help lower costs, improve insight, and capture opportunities (2009), http://www.sap.com/solutions/business-suite/index.epx
  13. 13.
    Peterson, J.L.: Petri Net Theory and the Modelling of Systems. Prentice-Hall, Englewood Cliffs (1981)zbMATHGoogle Scholar
  14. 14.
    jCOM1 AG: Process management - jcom1 (2009), http://www.jcom1.com/
  15. 15.
    Fleischmann, A.: Distributed Systems, Software Design & Implementation (1995)Google Scholar
  16. 16.
    Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I., Kilpatrick, P., Brown, T.J.: Towards utilizing model-driven engineering of composite applications for business performance analysis. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 369–380. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    SAP AG: Components & tools of sap netweaver (2009), http://www.sap.com/platform/netweaver/components/sapnetweaverbpm/index.epx
  18. 18.
    Knöpfel, A., Gröne, B., Tabeling, P.: Fundamental Modeling Concepts: Effective Communication of IT Systems. John Wiley & Sons, Chichester (2006)Google Scholar
  19. 19.
    amd Murray Woodside, D.B.P.: An intermediate metamodel with scenarios and resources for generating performance models from uml designs. Software and Systems Modeling 6(2), 163–184 (2007)CrossRefGoogle Scholar
  20. 20.
    Information Society Technologies: Sixth Framework Programme, Description of Work: MODELling solution for comPLEX software systems (MODELPLEX) (2006)Google Scholar
  21. 21.
    Dehnert, J.: PhD Thesis: A Methodology for Workflow Modeling: From business process modeling towards sound workflow specification. TU-Berlin (2003)Google Scholar
  22. 22.
    Eshuis, R.: PhD Thesis: Semantics and Verification of UML Activity Diagrams for Workflow Modelling. Centre for Telematics and Information Technology (CTIT), University of Twente (2002)Google Scholar
  23. 23.
    Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and modeling in the small. In: Aßmann, U., Liu, Y., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Fritzsche, M., Bruneliere, H., Vanhoof, B., Berbers, Y., Jouault, F., Gilani, W.: Applying megamodelling to model driven performance engineering. In: Proceedings of the International Conference and Workshop on the Engineering of Computer Based Systems (ECBS 2009), pp. 244–253. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  25. 25.
    Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application of tracing techniques in model-driven performance engineering. In: Proceedings of the 4th ECMDA Traceability Workshop (ECMDA-TW), pp. 111–120 (2008)Google Scholar
  26. 26.
    Keller, A., Brown, A.B., Hellerstein, J.L.: A configuration complexity model and its application to a change management system. IEEE Computer Society Transactions 4, 13–27 (2007)Google Scholar
  27. 27.
    Fabro, M.D.D., Albert, P., Bzivin, J., Jouault, F.: Industrial-strength rule interoperability using model driven engineering. In: Proceedings of the 5mes Journes sur l’Inginierie Dirige par les Modles (2009) (to appear)Google Scholar
  28. 28.
    Sun, Y., Demirezen, Z., Jouault, F., Tairas, R., Gray, J.: A model engineering approach to tool interoperability. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 178–187. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Ferrante, J., Ottenstein, K., Warren, J.: The program dependence graph and its use in optimization. ACM Transactions on Programming Languages and Systems (TOPLAS) 9, 319–349 (1987)CrossRefzbMATHGoogle Scholar
  30. 30.
    Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently computing static single assignment form and the control dependence graph. ACM Transactions on Programming Languages and Systems (TOPLAS) 13, 451–490 (1991)CrossRefGoogle Scholar
  31. 31.
    Associates, B.S.: The BPMS Report: EMC Documentum Process Suite 6.0 (2008), http://www.bpminstitute.org/whitepapers/whitepaper/article/emc-documentum-process-suite-6-0-1/news-browse/1.html
  32. 32.
    Harmon, P., Wolf, C.: The state of business process management (2008), http://www.bptrends.com/surveys_landing.cfm

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mathias Fritzsche
    • 1
  • Wasif Gilani
    • 2
  1. 1.SAP AGArchitecture and Innovation Services, Modeling and TaxonomyGermany
  2. 2.SAP Research BelfastEnterprise IntelligenceUnited Kingdom

Personalised recommendations