Skip to main content

Vibrational Absorption of Quasi-substitutional Atoms and Other Centres

  • Chapter
  • First Online:
Optical Absorption of Impurities and Defects in Semiconducting Crystals

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 169))

Abstract

This chapter deals almost only with the absorption of centres produced in semiconductors during irradiation with γ-rays and fast electrons or neutrons or during subsequent annealing treatments. Together with PL studies, this domain has been actively investigated because electrical measurements are usually difficult to perform after irradiation treatments due to the high resistivity of the samples. Technically, the observed spectra generally depend on the irradiation temperature, and as for the ESR and electronic spectra in these materials, an integrated set-up can be required allowing to perform the optical measurement at the temperature of irradiation when it is below room temperature. A large number of LVMs associated with radiation defects has been reported, especially in silicon. The interpretation of these LVMs can be far from simple because of the possible overlap of some bands and also because of some metastability effects. Potential modelling of the related centres can also be made hard because of the diversity of the possible atomic structures. In this respect, the use of quasi-monoisotopic crystals and the doping with selected isotopes has been of a great help.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [21], the contents of pages 970 and 971 are inverted.

  2. 2.

    In the original paper, the frequency was given as \(887\,{\mathrm{cm}}^{-1}\).

  3. 3.

    In [25], the \(V{ \mathrm{O}}_{2}\) centre is simply noted \({A}^{{\prime}}\), with reference to \(V\)O, often noted \(A\) at that time.

  4. 4.

    The frequency of the lowest energy mode is close to one of the LVMs associated with \(({\mathrm{C}}_{\mathrm{i}}{\mathrm{O}}_{\mathrm{i}})\) shown in Fig. 7.1, associated with the (\(V\)O) modes.

  5. 5.

    In [55, 5861] this mode is noted \(C\).

  6. 6.

    There exists a defect made of two contiguous C atoms, whose hydrogenated form \({\mathrm{HC}}_{\mathrm{i}}{\mathrm{C}}_{\mathrm{s}}\) gives the PL \(T\)-line at 935.1 meV (see Sect. 8.4.2.1).

  7. 7.

    In the papers quoted in this section, the IR \({\mathrm{A}}^{{\prime}}\) and \({\mathrm{A}}^{{\prime\prime}}\) of \({C}_{1\mathrm{h}}\) are noted \(A\) and \(B\), respectively.

  8. 8.

    This is apparently the only reference where the Si-A17 spectrum is mentioned.

  9. 9.

    In silicon, LVMs denoted as C(1) are related to the \({\mathrm{C}}_{\mathrm{i}}\) split interstitial configuration (see Sect. 7.2.1).

References

  1. J.W. Corbett, G.D. Watkins, R.M. Chrenko, R.S. McDonald, Defects in irradiated silicon. II Infrared absorption of the Si-A center. Phys. Rev. 121, 1015–1022 (1961)

    Google Scholar 

  2. G. Bemski, Paramagnetic resonance in electron-irradiated silicon. J. Appl. Phys. 30, 1195–1198 (1959)

    Google Scholar 

  3. G.D. Watkins, J.W. Corbett, R.M. Walker, Spin resonance in electron-irradiated silicon. J. Appl. Phys. 30, 1198–1203 (1959)

    Google Scholar 

  4. G.D. Watkins, J.W. Corbett, Defects in irradiated silicon. I. Electron spin resonance of the \(\mathrm{Si} - A\) center. Phys. Rev. 121, 1001–1014 (1961)

    Google Scholar 

  5. A.R. Bean, R.C. Newman, An infra-red study of defects produced in n-type silicon by electron irradiation at low temperatures. Solid State Commun. 9, 271–274 (1971)

    Google Scholar 

  6. G.K. Wertheim, D.N.E. Buchanan, Electron-bombardment damage in oxygen-free silicon. J. Appl. Phys. 30, 1232–1234 (1959)

    Google Scholar 

  7. F.A. Abou-el-Fotouh, R.C. Newman, Electron irradiation damage in silicon containing carbon and diffused \({}^{18}\mathrm{O}\). Solid State Commun. 15, 1409–1411 (1974)

    Google Scholar 

  8. D.R. Bosomworth, W. Hayes, A.R.L. Spray, G.D. Watkins, Analysis of oxygen in silicon in the near and far infrared. Proc. Roy. Soc. Lond. A 317, 133–152 (1970)

    Google Scholar 

  9. M. Pesola, J. von Boehm, T. Mattila, R.M. Nieminen, Computational study of interstitial oxygen and vacancy-oxygen complexes in silicon. Phys. Rev. B 60, 11449–11463 (1999)

    Google Scholar 

  10. L.I. Murin, V.P. Markevich, T. Hallberg, J.L. Lindström, New infrared vibrational bands related to interstitial and substitutional oxygen in silicon. Solid State Phenom. 69–70, 309–314 (1999)

    Google Scholar 

  11. J.L. Lindström, L.I. Murin, V.P. Markevich, T. Hallberg, R.G. Svensson, Vibrational absorption from vacancy-oxygen-related complexes \((\mathrm{VO},{\mathrm{V}}_{2}\mathrm{O},{\mathrm{VO}}_{2})\) in irradiated silicon. Physica B 273–274, 291–295 (1999)

    Google Scholar 

  12. J. Coutinho, R. Jones, P.R. Briddon, S. berg, Oxygen and dioxygen centres in Si and Ge: Density functional calculations. Phys. Rev. B 62, 10824–10840 (2000)

    Google Scholar 

  13. V.P. Markevich, A.R. Peaker, J. Coutinho, R. Jones, V.J.B. Torres, S. Öberg, P.R. Briddon, L.I. Murin, L. Dobaczewski, N.V. Abrosimov, Structure and properties of vacancy-oxygen complexes in \({\mathrm{Si}}_{1-\mathrm{x}}{\mathrm{Ge}}_{\mathrm{x}}\) alloys. Phys. Rev. B 69, 125218/1–11 (2004)

    Google Scholar 

  14. G. Davies, S. Hayama, S. Hao, B. Bech Nielsen, J. Coutinho, M. Sanati, S.K. Estreicher, K.M. Itoh, Host isotope effects on midinfrared optical transitions in silicon. Phys. Rev. B 71, 115212/1–7 (2005)

    Google Scholar 

  15. R. Van Kemp, M. Sprenger, E.G. Sieverts, C.A.J. Ammerlaan, Oxygen-vacancy complex in silicon. II. \({}^{17}\mathrm{O}\) electron-nuclear double resonance. Phys. Rev. B 40, 4054–4061 (1989)

    Google Scholar 

  16. L.I. Murin, B.G. Svensson, J.L. Lindström, V.P. Markevich, C.A. Londos, Trivacancy-oxygen complex in silicon: Local vibrational mode characterization. Physica B 404, 4568–4571 (2009)

    Google Scholar 

  17. L.I. Murin, B.G. Svensson, J.L. Lindström, V.P. Markevich, C.A. Londos, Divacancy-oxygen and trivacancy-oxygen complexes in silicon: local vibrational modes studies. Solid State Phenom. 156–158, 129–134 (2010)

    Google Scholar 

  18. K.L. Brower, Electron paramagnetic resonance of the neutral \((\mathrm{S} = 1)\) one-vacancy-oxygen center in irradiated silicon. Phys. Rev. B 4, 1968–1982 (1971)

    Google Scholar 

  19. P.R. Brosious, EPR evidence for a positively charged vacancy-oxygen defect in silicon. Appl. Phys. Lett. 29, 265–267 (1976)

    Google Scholar 

  20. A.B. Van Oosten, A.M. Frens, J. Schmidt, Metastable triplet state of the vacancy-oxygen center in silicon: an ab initio study. Phys. Rev. B 50, 5239–5246 (1994)

    Google Scholar 

  21. B. Pajot, S. McQuaid, R.C. Newman, C. Song, R. Rahbi, A piezo-spectroscopic study of oxygen-vacancy centres in silicon. Mater. Sci. Forum 143–147, 969–974 (1994)

    Google Scholar 

  22. A.S. Oates, R.C. Newman, Involvement of oxygen-vacancy defects in enhancing oxygen diffusion in silicon. Appl. Phys. Lett. 49, 262–264 (1986)

    Google Scholar 

  23. A. Nakanishi, N. Fukata, M. Suezawa, Vacancy-oxygen pairs and vacancy-oxygen-hydrogen complexes in electron-irradiated n-type Cz-Si pre-doped with hydrogen. Jpn. J. Appl. Phys. 42, 6737–6741 (2003)

    Google Scholar 

  24. J.W. Corbett, G.D. Watkins, R.S. McDonald, New oxygen infrared bands in annealed irradiated silicon. Phys. Rev. 135, A1381–A1385 (1964)

    Google Scholar 

  25. H.J. Stein, Oxygen isotope effect on the \(889\,{\mathrm{cm}}^{-1}\) band in silicon. Appl. Phys. Lett. 48, 1540–1541 (1986)

    Google Scholar 

  26. C.A. Londos, A. Andrianakis, A. Aliprantis, H. Ohyama, V.V. Emtsev, G.A. Oganesyan, IR studies of oxygen-vacancy defects in electron-irradiated Ge-doped Si. Physica B 401–402, 487–490 (2007)

    Google Scholar 

  27. J.L. Lindström, T. Hallberg, L.I. Murin, B.G. Svensson, V.P. Markevich, T. Hallberg, The \({\mathrm{VO}}_{2}^{{_\ast}}\) defect in silicon. Physica B 340–342, 509–513 (2003)

    Google Scholar 

  28. V. Akhmetov, G. Kissinger, W. von Ammon, Interaction of oxygen with thermally induced vacancies in Czochralski silicon. Appl. Phys. Lett. 94, 092105/1–3 (2009)

    Google Scholar 

  29. V. Akhmetov, G. Kissinger, W. von Ammon, Formation of vacancy and oxygen containing complexes in Cz-Si by rapid thermal annealing. Physica B 404, 4572–4575 (2009)

    Google Scholar 

  30. Y.H. Lee, J.W. Corbett, EPR studies of defects in electron-irradiated silicon: A triplet state of a vacancy-oxygen defect. Phys. Rev. B 13, 2653–2665 (1976)

    Google Scholar 

  31. Y.H. Lee, J.C. Corelli, J.W. Corbett, Oxygen vibrational bands in irradiated silicon. Phys. Lett. 60A, 55–57 (1977)

    Google Scholar 

  32. C. Ewels, R. Jones, S. Öberg, A first principles investigation of vacancy-oxygen defects in Si. Mater. Sci. Forum 196–201, 1297–1301 (1995)

    Google Scholar 

  33. T. Hallberg, J.L. Lindström, B.G. Svensson, K. Swiatek, Annealing of electron-irradiated P-, As-, Sb- and Bi-doped Czochralski silicon. Mater. Sci. Forum 143–147, 1239–1244 (1994)

    Google Scholar 

  34. J.L. Lindström, B.G. Svensson, W.M. Chen, A new defect observed in annealed highly phosphorus-doped electron-irradiated silicon. Mater. Sci. Forum 83-87, 333–338 (1992)

    Google Scholar 

  35. Yu.V. Pomozov, M.G. Sosnin, L.I. Khirunenko, V.I. Yashnik, N.V. Abrosimov, W. Schröder, M. Höhne, Oxygen-containing radiation defects in \({\mathrm{Si}}_{1-\mathrm{x}}{\mathrm{Ge}}_{\mathrm{x}}\). Semiconductors 34, 989–993 (2000)

    Google Scholar 

  36. S.J. Pearton, J.W. Corbett, M. Stavola, Hydrogen in Crystalline Semiconductors (Springer, Berlin, 1992)

    Google Scholar 

  37. S.K. Estreicher, Hydrogen-related defects in crystalline semiconductors. Mat. Sci. Eng. Rep. 14, 319–412 (1995)

    Google Scholar 

  38. B.N. Mukashev, S.Zh. Tokmoldin, M.F. Tamendarov, V.V. Frolov, Hydrogen passivation of vacancy-related centres in silicon. Physica B 170, 545–549 (1991)

    Google Scholar 

  39. V.P. Markevich, L.I. Murin, M. Suezawa, J.L. Lindström, J. Coutinho, R. Jones, P.R. Briddon, S. Öberg, Observation and theory of the \(V -\mathrm{O} -{\mathrm{H}}_{2}\) complex in silicon. Phys. Rev. B 61, 12964–12969 (2000)

    Google Scholar 

  40. P. Johannesen, B. Bech-Nielsen, J.R. Byberg, Identification of the oxygen-vacancy defect containing a single hydrogen atom in crystalline silicon. Phys. Rev. B 61, 4659–4666 (2000)

    Google Scholar 

  41. J. Coutinho, O. Andersen, L. Dobaczewski, K. Bonde Nielsen, A.R. Peaker, R. Jones, S. Öberg, P.R. Briddon, Effect of stress on the energy levels of the vacancy-oxygen-hydrogen complex in Si. Phys. Rev. B 68, 184106/1–11 (2003)

    Google Scholar 

  42. R.E. Whan, Investigations of oxygen-defect interactions between 25 and 700 K in irradiated germanium. Phys. Rev. 140, A690–A698 (1965)

    Google Scholar 

  43. J.A. Baldwin, Electron paramagnetic resonance in irradiated oxygen doped germanium. J. Appl. Phys. 36, 793–795 (1965)

    Google Scholar 

  44. V.P. Markevich, V.V. Litvinov, L. Dobaczewski, J.L. Lindström, L.I. Murin, A.R. Peaker, Radiation-induced defects and their transformations in oxygen-rich germanium crystals. Phys. Stat. Sol. C 0, 702–706 (2003)

    Google Scholar 

  45. V.P. Markevich, V.V. Litvinov, L. Dobaczewski, J.L. Lindström, L.I. Murin, S.V. Vetrov, I.D. Hawkins, A.R. Peaker, Vacancy-oxygen complex in Ge crystals. Physica B 340–342, 844–848 (2003)

    Google Scholar 

  46. P. Vanmeerbeck, P. Clauws, H. Vrielinck, B. Pajot, L. Van Hoorebeke, A. Nylandsted Larsen, High-resolution local vibrational mode spectroscopy and electron paramagnetic resonance study of the oxygen-vacancy complex in irradiated germanium. Phys. Rev. B 70, 035203/1–8 (2004)

    Google Scholar 

  47. A. Carvalho, R. Jones, J. Coutinho, V.J.B. Torres, S. Öberg, J.M. Campanera Alsina, M. Shaw, P.R. Briddon, Local-density calculations of the vacancy-oxygen center in germanium. Phys. Rev. B 75, 115206/1–8 (2007)

    Google Scholar 

  48. A. Carvalho, V.J.B. Torres, V.P. Markevich, J. Coutinho, V.V. Litvinov, A.R. Peaker, R. Jones, P.R. Briddon, Identification of stable and metastable forms of \({\mathrm{VO}}_{2}\) centers in germanium. Physica B 401–402, 192–195 (2007)

    Google Scholar 

  49. P. Vanmeerbeck, P. Clauws, Local vibrational mode spectroscopy of dimer and other oxygen-related defects in irradiated germanium. Phys. Rev. B 64, 245201/1–6 (2001)

    Google Scholar 

  50. C. Song, W. Ge, D. Jiang, C. Hsu, Pair of local mode absorption bands related to EL2 defects in semi-insulating GaAs. Appl. Phys. Lett. 50, 1666–1668 (1987)

    Google Scholar 

  51. X. Zhong, D. Jiang, W. Ge, C. Song, Model study of the local vibration center related to EL2 levels in GaAs. Appl. Phys. Lett. 52, 628–630 (1988)

    Google Scholar 

  52. J. Schneider, B. Dischler, H. Seelewind, P.M. Mooney, J. Lagowski, M. Matsui, D.R. Beard, R.C. Newman, Assessment of oxygen in gallium arsenide by infrared local vibrational mode spectroscopy. Appl. Phys. Lett. 54, 1442–1444 (1989)

    Google Scholar 

  53. H.Ch. Alt, Photosensitivity of the 714 and \(730\,{\mathrm{cm}}^{-1}\) absorption bands in semi-insulating GaAs: Evidence for a deep donor involving oxygen. Appl. Phys. Lett. 54, 1445–1447 (1989)

    Google Scholar 

  54. H.Ch. Alt, Fine structure of the oxygen-related local mode at \(714\,{\mathrm{cm}}^{-1}\) in GaAs. Appl. Phys. Lett. 55, 2736–2738 (1989)

    Google Scholar 

  55. C. Song, B. Pajot, F. Gendron, Local mode spectroscopy and photo-induced effects of oxygen-related centers in semi-insulating gallium arsenide. J. Appl. Phys. 67, 7307–7312 (1990)

    Google Scholar 

  56. H.Ch. Alt, Experimental evidence for a negative-\(U\) center in gallium arsenide related to oxygen. Phys. Rev. Lett. 65, 3421–3424 (1990)

    Google Scholar 

  57. M. Skowronski, S.T. Neild, R.E. Kremer, Location of an energy level of oxygen-vacancy complex in GaAs. Appl. Phys. Lett. 57, 902–904 (1990)

    Google Scholar 

  58. C. Song, B. Pajot, C. Porte, Some properties of the oxygen-vacancy center in gallium arsenide, in Proc. 21 \({}^{\mathrm{st}}\) Intern. Conf. Phys. Semicond., Beijing, 11–14 August 1992, ed. by P. Jiang, H Zheng (World Scientific, Singapore, 1992), pp. 1629–1633

    Google Scholar 

  59. C. Song, Doctoral thesis, Université Paris 7 (1992)

    Google Scholar 

  60. C. Song, B. Pajot, W.K. Ge, D.S. Jiang, Relation between the metastability of EL2 and the photosensitivity of local vibrational modes of semi-insulating GaAs. Phys. Rev. B 52, 4864–4869 (1995)

    Google Scholar 

  61. C. Song, B. Pajot, C. Porte, Piezospectroscopy of interstitial oxygen in gallium arsenide. Phys. Rev. B 41, 12330–12333 (1990)

    Google Scholar 

  62. M. Linde, J.M. Spaeth, H.Ch. Alt, The paramagnetic charge state of substitutional oxygen in GaAs. Appl. Phys. Lett. 67, 662–664 (1995)

    Google Scholar 

  63. F.K. Koschnick, M. Linde, M.V.B. Pinheiro, J.M. Spaeth, Optically detected electron-paramagnetic resonance investigations of the substitutional oxygen defect in gallium arsenide. Phys. Rev. B 56, 10221–10227 (1997)

    Google Scholar 

  64. R. Jones, S. Öberg, Multiple charge states of substitutional oxygen in gallium arsenide. Phys. Rev. Lett. 69, 136–139 (1992)

    Google Scholar 

  65. T. Mattila, R.M. Nieminen, Ab initio study of oxygen point defects in GaAs, GaN, and AlN. Phys. Rev. B 54, 16676–16682 (1996)

    Google Scholar 

  66. A. Taguchi, H. Kageshima, Diffusion and stability of oxygen in GaAs and AlAs. Phys. Rev. B 60, 5383–5391 (1998)

    Google Scholar 

  67. M. Pesola, J. von Boehm, V. Sammalkorpi, T. Mattila, R.M. Nieminen, Microscopic structure of oxygen defect in gallium arsenide. Phys. Rev. B 60, R16267–R16270 (1999)

    Google Scholar 

  68. H.Ch. Alt, Y.V. Gomeniuk, U. Kretzer, Charge state and quantitative infrared spectroscopy of electrically oxygen centers in gallium arsenide. J. Appl. Phys. 101, 073516/1-6 (2007)

    Google Scholar 

  69. G.M. Martin, A. Mitonneau, A. Mircea, Electron traps in bulk and epitaxial GaAs crystals. Electron. Lett. 13, 191–192 (1977)

    Google Scholar 

  70. U. Kaufmann, E. Klausmann, J. Schneider, H.Ch. Alt, Negative-\(U\), off-center \({\mathrm{O}}_{\mathrm{As}}\) in GaAs and its relation with the EL3 defect. Phys. Rev. B 43, 12106–12109 (1991)

    Google Scholar 

  71. M. Skowronski, S.T. Neild, R.E. Kremer, Calibration of the isolated oxygen interstitial localized vibrational mode absorption line in GaAs. Appl. Phys. Lett. 58, 1545–1547 (1991)

    Google Scholar 

  72. S.T. Neild, M. Skowronski, J. Lagowski, Signature of the gallium-oxygen-gallium defect in GaAs by deep level transient spectroscopy measurements. Appl. Phys. Lett. 58, 859–861 (1991)

    Google Scholar 

  73. G.S. Khoo, C.K. Ong, \({\mathrm{O}}^{-}\) in GaP: a negative-\(U\) centre. J. Phys. Condens. Matt. 5, 3917–3924 (1993)

    Google Scholar 

  74. H.Y. Fan, A.K. Ramdas, Infrared absorption and photoconductivity in irradiated silicon. J. Appl. Phys. 30, 1127–1134 (1959)

    Google Scholar 

  75. L.I. Murin, J.L. Lindström, G. Davies, V.P. Markevich, Evolution of radiation-induced carbon-oxygen related defects in silicon upon annealing: LVM studies. Nucl. Instrum. Meth. B 253, 210–213 (2006)

    Google Scholar 

  76. B. Pajot, Optical Absorption of Impurities and Defects in Semiconducting Crystals – Hydrogen-Like Centres (Springer, Berlin, 2010)

    Google Scholar 

  77. R.E. Whan, Oxygen-defect complexes in neutron-irradiated silicon. J. Appl. Phys. 37, 3378–3382 (1966)

    Google Scholar 

  78. A.R. Bean, R.C. Newman, Low temperature electron irradiation of silicon containing carbon. Solid State Commun. 8, 175–177 (1970)

    Google Scholar 

  79. L.I. Khirunenko, M.G. Sosnin, V.Yu. Pomozov, L.I. Murin, V.P. Markevich, A.R. Peaker, L.M. Almeida, J. Coutinho, V.J.B. Torres, Formation of interstitial carbon-interstitial oxygen complexes: Local vibrational mode spectroscopy and density functional theory. Phys. Rev. B 78, 155203/1–8 (2008)

    Google Scholar 

  80. E.V. Lavrov, B. Bech Nielsen, J.R. Byberg, B. Hourahine, B. Jones, S. Öberg, P.R. Briddon, Local vibrational modes of two neighboring substitutional carbon atoms in silicon. Phys. Rev. B 62, 158–165 (2000)

    Google Scholar 

  81. R.C. Newman, Infra-red Studies of Crystal Defects (Taylor and Francis, London, 1973)

    Google Scholar 

  82. L.I. Khirunenko, Yu.V. Pomozov, M.G. Sosnin, M.O. Trypachko, A. Duvanskii, V.J.B. Torres, J. Coutinho, R. Jones, P.R. Briddon, N.V. Abrosimov, H. Riemann, Local vibrations of interstitial carbon in SiGe alloys. Mater. Sci. Semicond. Process. 9, 514–519 (2006)

    Google Scholar 

  83. J.F. Zheng, M. Stavola, G.D. Watkins, Structure of the neutral charge state of interstitial carbon in silicon, in 22nd Internat. Conf. Phys. Semicond., ed. by D.J. Lockwood (World Scientific, Singapore, 1995), pp. 2363–2366

    Google Scholar 

  84. P. Leary, R. Jones, S. Öberg, V.J.B. Torres, Dynamic properties of interstitial carbon and carbon-carbon pair defects in silicon. Phys. Rev. B 55, 2188–2194 (1997)

    Google Scholar 

  85. R.C. Newman, A.R. Bean, Irradiation damage in carbon-doped silicon irradiated at low temperatures by 2 MeV electrons. Rad. Eff. 8, 189–193 (1971)

    Google Scholar 

  86. S.P. Chappell, R.C. Newman, The selective trapping of self-interstitials by interstitial carbon impurities in electron irradiated silicon. Semicond. Sci. Technol. 2, 691–694 (1987)

    Google Scholar 

  87. E.V. Lavrov, M. Fanciulli, M. Kaukonen, R. Jones, P.R. Briddon, Carbon-tin defects in silicon. Phys. Rev. B 64, 125212/1–5 (2001)

    Google Scholar 

  88. S.P. Chappell, G. Davies, E.C. Lightowlers, R.C. Newman, A metastable precursor to the di-carbon centre in crystalline silicon. Mater. Sci. Forum 38–41, 481–485 (1989)

    Google Scholar 

  89. L.W. Song, X.D. Zhan, B.W. Benson, G.D. Watkins, Bistable interstitial-carbon-substitutional-carbon pair in silicon. Phys. Rev. B 42, 5765–5783 (1990)

    Google Scholar 

  90. L.W. Song, X.D. Zhan, B.W. Benson, G.D. Watkins, Bistable defect in silicon: the interstitial-carbon-substitutional-carbon pair. Phys. Rev. Lett. 60, 460–463 (1988)

    Google Scholar 

  91. K.P. O’Donnell, K.M. Lee, G.D. Watkins, Origin of the 0.97 eV luminescence in irradiated silicon. Physica B 116, 258–263 (1983)

    Google Scholar 

  92. E.V. Lavrov, L. Hoffmann, B. Bech Nielsen, Local vibrational modes of the metastable dicarbon center \(({\mathrm{C}}_{\mathrm{s}}-{\mathrm{C}}_{\mathrm{i}})\) in silicon. Phys. Rev. B 60, 8081–8086 (1999)

    Google Scholar 

  93. R.B. Capaz, A. Dal Pino, J.D. Joannopoulos, Theory of carbon-carbon pairs in silicon. Phys. Rev. B 58, 9845–9850 (1998)

    Google Scholar 

  94. E.C. Lightowlers, A.N. Safonov, Photoluminescence vibrational spectroscopy of defects containing the light impurities carbon and oxygen in silicon. Mater. Sci. Forum 258–263, 617–622 (1997)

    Google Scholar 

  95. G. Davies, R.C. Newman, Carbon in mono-crystalline silicon, in Handbook on Semiconductors, vol. 3b, ed. by S. Mahajan (North Holland, Amsterdam, 1994), pp. 1557–1640

    Google Scholar 

  96. H. Horiye, E.G. Wikner, Three new electron spin resonance centers in electron-irradiated silicon. J. Appl. Phys. 40, 3879–3880 (1969)

    Google Scholar 

  97. J.H. Byberg, B. Bech Nielsen, M. Fanciulli, S.K. Estreicher, P.A. Fedders, Dimer of substitutional carbon in silicon studied by EPR and ab-initio methods. Phys. Rev. B 61, 12939–12945 (2000)

    Google Scholar 

  98. A.K. Ramdas, M.G. Rao, Infrared absorption spectra of oxygen-defect complexes in irradiated silicon. Phys. Rev. 142, 451–456 (1966)

    Google Scholar 

  99. J. Coutinho, L.I. Murin, V.P. Markevich, J.L. Lindström, Interstitial carbon-oxygen center and hydrogen related shallow thermal donors in Si. Phys. Rev. B 65, 014109/1–11 (2001)

    Google Scholar 

  100. J.M. Trombetta, G.D. Watkins, Identification of an interstitial carbon-interstitial oxygen complex in silicon. Appl. Phys. Lett. 51, 1103–1105 (1987)

    Google Scholar 

  101. S. Hayama, G. Davies, J. Tan, J. Coutinho, R. Jones, K.M. Itoh, Lattice isotope effects on optical transitions in silicon. Phys. Rev. B 70, 035202/1–9 (2004)

    Google Scholar 

  102. K. Thonke, G.D. Watkins, R. Sauer, Carbon and oxygen isotope effects in the 0.79 eV defect photoluminescence spectrum in irradiated silicon. Solid State Commun. 51, 127–130 (1984)

    Google Scholar 

  103. W. Kürner, R. Sauer, A. Dörnen, K. Thonke, Structure of the 0.767-eV oxygen-carbon luminescence defect in \(45{0}^{\circ }\mathrm{C}\) thermally annealed Czochralski-grown silicon. Phys. Rev. B 39, 13327–13337 (1989)

    Google Scholar 

  104. C. Foy, Uniaxial stress analysis of the 0.78 eV vibronic band in irradiated silicon. J. Phys. C 15, 2059–2067 (1982)

    Google Scholar 

  105. K. Thonke, A. Hangleiter, J. Wagner, R. Sauer, 0.79 (C line) defect in irradiated oxygen-rich silicon: excited state structure, internal strain and luminescence decay time. J. Phys. C 18, L795–L801 (1985)

    Google Scholar 

  106. R. Jones, S. Öberg, Oxygen frustration and the interstitial carbon-oxygen complex in Si. Phys. Rev. Lett. 68, 86–89 (1992)

    Google Scholar 

  107. D.J. Backlund, S.K. Estreicher, Theoretical studies of the \({\mathrm{C}}_{\mathrm{i}}{\mathrm{O}}_{\mathrm{i}}\) and \({\mathrm{I}}_{\mathrm{Si}}{\mathrm{C}}_{\mathrm{i}}{\mathrm{O}}_{\mathrm{i}}\) defects in silicon. Physica B 401–402, 163–166 (2007)

    Google Scholar 

  108. C.A. Londos, M.S. Potsidi, G.D. Antonaras, A. Andrianakis, Isochronal annealing studies of the carbon-related defects in irradiated silicon. Physica B 376–377, 165–168 (2006)

    Google Scholar 

  109. G. Davies, A.S. Oates, R.C. Newman, R. Wooley, E.C. Lightowlers, M.J. Binns, J.G. Wilkes, Carbon-related radiation damage centres in Czochralski silicon. J. Phys. C 19, 841–855 (1986)

    Google Scholar 

  110. F. Thompson, S.R. Morrison, R.C. Newman, Infrared local mode absorption in irradiated GaP and GaAs. Proc. Internat. Conf. Rad. Damage and Defects Semicond. Reading, 1972, Inst. Phys. Conf. Ser. 16, 371–376 (1973)

    Google Scholar 

  111. R.C. Newman, Local vibrational mode spectroscopy of defects in III/V compounds, in Imperfections in III-V Compounds, Semiconductors and Semimetals, vol. 38, ed. by E.R. Weber (Academic, New York, 1993), pp. 117–187

    Google Scholar 

  112. G.A. Gledhill, S.B. Upadhyay, M.J.L. Sangster, R.C. Newman, Fine structure of the LVM-lines from \(({\mathrm{C}}_{\mathrm{As}} -{\mathrm{As}}_{\mathrm{i}})\) complexes in irradiated GaAs. J. Mol. Struct. 247, 313–319 (1991)

    Google Scholar 

  113. M.J.L. Sangster, R.C. Newman, G.A. Gledhill, S.B. Upadhyay, Cluster calculations of local vibrational mode frequencies of impurities in III-V semiconductors: application to detect complexes involving \({\mathrm{C}}_{\mathrm{As}}\) in GaAs. Semicond. Sci. Technol. 7, 1295–1305 (1992)

    Google Scholar 

  114. R. Jones, S. Öberg, Instabilities of simple models of \(\mathrm{C} -{\mathrm{As}}_{\mathrm{i}}\) complexes in gallium arsenide. Semicond. Sci. Technol. 7, 855–857 (1992)

    Google Scholar 

  115. A.K. Tipping, R.C. Newman, An infrared study of the production, diffusion and complexing of interstitial boron in electron-irradiated silicon. Semicond. Sci. Technol. 2, 389–398 (1987)

    Google Scholar 

  116. R.D. Harris, J.I. Newton, G.D. Watkins, Negative-U defect: interstitial boron in silicon. Phys. Rev. B 36, 1094–1104 (1987)

    Google Scholar 

  117. E. Tarnow, Theory of the B interstitial related defect in Si. Europhys. Lett. 16, 449–454 (1991)

    Google Scholar 

  118. M. Hakala, M.J. Puska, R.M. Nieminen, First-principles calculations of interstitial boron in silicon. Phys. Rev. B 61, 8155–8161 (2000)

    Google Scholar 

  119. J. Adey, R. Jones, P.R. Briddon, J.P. Goss, Optical and electrical activity of boron interstitial in silicon. J. Phys. Condens. Matter 15, S2851–S2858 (2003)

    Google Scholar 

  120. A. Carvalho, R. Jones, J. Coutinho, P.R. Briddon, Ab initio calculation of the local vibrational modes of the interstitial boron-interstitial oxygen defect in silicon. J. Phys. Condens. Matter 17, L155–L159 (2005)

    Google Scholar 

  121. R.C. Newman, R.S. Smith, Local mode absorption from boron pairs in silicon. Phys. Lett. 24A, 671–672 (1967)

    Google Scholar 

  122. P.M. Mooney, L.J. Cheng, M. Süli, J.D. Gerson, J.W. Corbett, Defects energy level in boron-doped silicon irradiated with 1-MeV electrons. Phys. Rev. B 15, 3836–3843 (1977)

    Google Scholar 

  123. L.C. Kimerling, M.T. Asom, J.L. Benton, P.J. Drevinsky, C.E. Caefer, Interstitial defect reactions in silicon. Mater. Sci. Forum 38–41, 141–150 (1989)

    Google Scholar 

  124. J.D. Collins, G.A. Gledhill, R. Murray, P.S. Nandhra, R.C. Newman, The selective trapping of arsenic interstitial atoms by impurities in gallium arsenide. Phys. Stat. Sol. B 151, 469–477 (1989)

    Google Scholar 

  125. R. Jones, S. Öberg, Theory of B - As\({}_{\mathrm{i}}\) complexes in gallium arsenide. Semicon. Sci. Technol. 7, 429–431 (1992)

    Google Scholar 

  126. M.R. Brozel, R.C. Newman, A low-symmetry interstitial boron centre in irradiated gallium arsenide. J. Phys. C 11, 3135–3146 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Pajot .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pajot, B., Clerjaud, B. (2013). Vibrational Absorption of Quasi-substitutional Atoms and Other Centres. In: Optical Absorption of Impurities and Defects in Semiconducting Crystals. Springer Series in Solid-State Sciences, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18018-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18018-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18017-0

  • Online ISBN: 978-3-642-18018-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics