Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 169))

Abstract

The deep centres are intrinsic or extrinsic complexes or isolated FAs with ground-state levels deep in the band gap, hence their name. They give rise to relatively high-energy transitions whose excited states cannot be described by donor or acceptor EMT. They can be found in some as-grown crystals, but they are also produced by irradiation with h-e particles or γ-rays, or associated with TMs introduced in the crystals. When their concentration is dominant, the resistivity of the material can reach the intrinsic resistivity and classical resistivity measurements are difficult to perform on such materials. These centres are characterized by the position(s) of their energy level(s) in the band gap, by their point-group symmetries, and by their isotopic distributions. In semiconductors, many high-energy absorption lines are also due to the creation of excitons bound to defects whose electronic properties are only roughly understood, but these lines can bring useful information on the nature of these defects, for instance by their electronic isotope shifts or splitting under a uniaxial stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [27], a misprint has inverted the attributions of V 2  +  and \({V }_{2}^{-}\).

  2. 2.

    In [39], the ZPLs are noted \({\mathrm{X}}_{\mathit{yz}}^{x}\) or \({\mathrm{B}}_{\mathit{yz}}^{x}\) by specifying the BE energy xy.z with respect to that of the excitonic gap \({E}_{\mathit{gx}}\) in silicon (1155 meV). The ZPL line at 1040 meV is thus noted X50 11, corresponding to \({E}_{\mathit{gx}} - 115\,\mathrm{meV}\).

  3. 3.

    This profile is observed in the whole series of 2-mm-thick FZ samples irradiated at the same energy.

  4. 4.

    Not to be confused with the H3 line, due to \(V{ \mathrm{N}}_{2}^{0}\), nearly at the same energy.

  5. 5.

    This centre should not be confused with an ESR \(\mathrm{S} = 1/2\) centre, also labelled N3 ([148], and references therein), assumed to involve Ns and an O atom.

  6. 6.

    The energy given for the V N0 ZPL is taken from [154]. In this reference, a ZPL at 575.97 nm (2152.6 meV) not related to V N0 has also been reported.

  7. 7.

    To point out again the redundancy in energy between ZPLs associated with different centres, a ZPL at 2463 meV (503.4 nm) almost coinciding with the H3 and 3H ZPLs has been observed in PL together with a ZPL at 2429 meV (510.4 nm) in some natural diamonds, and ascribed to a centre labelled S1 ([95], and references therein).

  8. 8.

    In [171], the 28Si, 29Si, and 30Si components of the 1 → 4 transition were noted A, C, and E, respectively, and those of the 2 → 4 transition B, D, and F, respectively. For the 1  →  3 and 2 → 3 transitions, the same lettering was used, but primed (A, C, E and B, D, F).

  9. 9.

    First Hund’s rule states that when two levels with the same electron configuration coexist, the one with the highest spin is the deepest.

  10. 10.

    E was for electron and L for Laboratoire d’Électronique Appliquée, Martin et al.’s affiliation.

  11. 11.

    In [189], EL2 is noted “O”.

  12. 12.

    The band structure of GaAs is qualitatively similar to the one of CdTe, shown in Fig. 2.6.

References

  1. J. Bourgoin, M. Lannoo, Point Defects in Semiconductors II Experimental Aspects (Springer, Berlin, 1983)

    Google Scholar 

  2. G. Davies, The optical properties of luminescent centres in silicon. Rep. Prog. Phys. 176, 83–188 (1989)

    Google Scholar 

  3. D.F. Daly, H.E. Noffke, An EPR study of fast neutron radiation damage in silicon, in Radiation Effects in Semiconductors, ed. by J.W. Corbett, G.D. Watkins (Gordon and Breach, London, 1971), pp. 179–187

    Google Scholar 

  4. F. Carton-Merlet, B. Pajot, D.T. Don, C. Porte, B. Clerjaud, P.M. Mooney, Photo-induced changes in the charge state of the divacancy in neutron and electron irradiated silicon. J. Phys. C 15, 2239–2255 (1982)

    Google Scholar 

  5. B.N. Mukashev, Kh.A. Abdullin, Yu.V. Gorelkinskii, S.Zh. Tokmoldin, Self-interstitial related reactions in silicon irradiated with light ions. Mater. Sci. Eng. B 58, 171–178 (1999)

    Google Scholar 

  6. H.Y. Fan, A.K. Ramdas, Infrared absorption and photoconductivity in irradiated silicon. J. Appl. Phys. 30, 1127–1134 (1959)

    Google Scholar 

  7. B. Pajot, Optical Absorption of Impurities and Defects in Semiconducting Crystals – Hydrogen-Like Centres (Springer, Berlin, 2010)

    Google Scholar 

  8. J.W. Corbett, G.D. Watkins, Production of divacancies and vacancies by electron irradiation in silicon. Phys. Rev. 138, A555–A560 (1965)

    Google Scholar 

  9. L.J. Cheng, J.C. Corelli, J.W. Corbett, G.D. Watkins, 1.8-, 3.3-, and 3.9-μ bands in irradiated silicon: correlation with the divacancy. Phys. Rev. 152, 761–774 (1966)

    Google Scholar 

  10. J.W. Corbett, G.D. Watkins, Silicon divacancy and its direct production by electron irradiation. Phys. Rev. Lett. 7, 314–316 (1961)

    Google Scholar 

  11. G.D. Watkins, J.W. Corbett, Defects in irradiated silicon: electron paramagnetic resonance of the divacancy. Phys. Rev. 138, A543–A555 (1965)

    Google Scholar 

  12. C.S. Chen, J.C. Corelli, Infrared spectroscopy of divacancy-associated radiation-induced absorption bands in silicon. Phys. Rev. B 5, 1505–1517 (1972)

    Google Scholar 

  13. P.R. Brosious, EPR of a spin-1 two-vacancy defect in electron-irradiated silicon, in Defects and Radiation Effects in Semiconductors 1978. Inst. Phys. Conf. Ser. No 46, ed. by J.H. Albany (The Institute of Physics, London, 1979), pp. 248–257

    Google Scholar 

  14. Y.H. Lee, J.W. Corbett, EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes. Phys. Rev. B 13, 2653–2666 (1976)

    Google Scholar 

  15. M.T. Lappo, V.D. Tkachev, Divacancies in silicon irradiated with fast neutrons. Sov. Phys. Semicond. 4, 1882–1884 (1971)

    Google Scholar 

  16. L.J. Cheng, P. Vajda, Effect of polarized light on the 1.8, 3.3, and 3.9-μ radiation induced absorption bands in silicon. Phys. Rev. 186, 816–823 (1969)

    Google Scholar 

  17. G. Davies, S. Hayama, S. Hao, B. Bech Nielsen, J. Coutinho, M. Sanati, S.K. Estreicher, K.M. Itoh, Host isotope effects on midinfrared optical transitions in silicon. Phys. Rev. B 71, 115212/1–7 (2005)

    Google Scholar 

  18. J.H. Svensson, B.G. Svensson, B. Monemar, Infrared absorption studies of the divacancy in silicon: new properties of the singly negative charge state. Phys. Rev. B 38, 4192–4197 (1988)

    Google Scholar 

  19. F. Merlet, B. Pajot, P. Vajda, Near infrared absorption of irradiated lithium-doped silicon and quenching of the 3.3-μm divacancy bands. J. Appl. Phys. 47, 1729–1731 (1976)

    Google Scholar 

  20. B. Massarani, A. Brelot, Evidence for a 130 K annealing stage of divacancy in electron-irradiated silicon, in Radiation Damage and Defects in Semiconductors. Inst. Phys. Conf. Ser. N 016, ed. by J.E. Whitehouse (The Institute of Physics, London, 1973), pp. 269–277

    Google Scholar 

  21. F. Carton-Merlet, B. Pajot, P. Vajda, Detection of the photopopulation and photoionisation of intrinsic point defects in irradiated silicon by IR absorption, in Defects and Radiation Effects in Semiconductors 1978. Inst. Phys. Conf. Series No 46, ed. by J.H. Albany (The Institute of Physics, Bristol, 1979), pp. 311–316

    Google Scholar 

  22. B.G. Svensson, J.L. Lindström, Generation of divacancies in silicon by MeV electrons: Dose rate dependence and influence of Sn and P. J. Appl. Phys. 72, 5616–5621 (1992)

    Google Scholar 

  23. F. Carton-Merlet, B. Pajot, P. Vajda, Extrinsic defects in neutron-irradiated silicon. An infrared study. J. Phys. 39, L113–L117 (1978)

    Google Scholar 

  24. L. Zhong, Z. Wang, S. Wan, L. Lin, Absorption peaks at 2663 and 2692 cm − 1 observed in neutron-transmutation-doped silicon. J. Appl. Phys. 66, 4275–4278 (1989)

    Google Scholar 

  25. G. Davies, S. Hayama, L. Murin, R. Krause-Rehberg, V. Bondarenko, A. Sengupta, C. Davia, A. Karpenko, Radiation damage in silicon exposed to high-energy protons. Phys. Rev. B 73, 165202/1–10 (2006)

    Google Scholar 

  26. H.G. Grimmeiss, Silicon-germanium – a promise into the future. Semiconductors 33, 939–941 (1999)

    Google Scholar 

  27. L. Khirunenko, Yu. Pomozov, M. Sosnin, N. Abrosimov, W. Schröder, Interaction of divacancies with Ge atoms in Si1 − x Ge x . Physica B 308–310, 550–553 (2001)

    Google Scholar 

  28. H.J. Stein, Divacancy-like absorption in ion-bombarded Ge. Radiation Damages and Defects in Semiconductors. Inst. Phys. Conf. Ser. N 0 16, ed. by J.E. Whitehouse (The Institute of Physics, London, 1973) pp 315–321

    Google Scholar 

  29. A.B. Gerasimov, N.D. Dolidze, R.M. Donina, B.M. Konovalenko, G.L. Ofengeim, A.A.Tsertsvadze, On the identification and possible space orientation of “light-sensitive” defects in Ge. Phys. Stat. Sol. A 70, 23–29 (1982)

    Google Scholar 

  30. C.S. Chen, R. Vogt-Lowell, J.C. Corelli, Higher order defect infrared absorption bands in Si, in Radiation Damage and Defects in Semiconductors. Inst. Phys. Conf. Ser. N 016, ed. by J.E. Whitehouse (The Institute of Physics, London, 1973), pp. 210–217

    Google Scholar 

  31. J.C. Corelli, D. Mills, R. Gruver, D. Cuddeback, Y.H. Lee, J.W. Corbett, Electronic excitation bands in irradiated silicon, in Radiation Effects in Semiconductors 1976, Inst. Phys. Ser. No 31, ed. by N.B. Urli , J.W. Corbett (The Institute of Physics, Bristol, 1977), pp. 251–257

    Google Scholar 

  32. Y. Shi, Y.D. Zheng, M. Suezawa, M. Imai, K. Sumino, Investigations on higher order bands in irradiated Czochralski silicon. Appl. Phys. Lett. 64, 1227–1229 (1994)

    Google Scholar 

  33. N.N. Gerasimenko, M. Rollé, L.J. Cheng, Y.H. Lee, J.C. Corelli, J.W. Corbett, Infrared absorption of silicon irradiated by protons. Phys. Stat. Sol. B 90, 689–695 (1978)

    Google Scholar 

  34. Y. Shi, F. Wu, Y. Zheng, M. Suezawa, M. Imai, K. Sumino, Temperature dependent investigation on optically active processes of higher-order bands in irradiated silicon. Phys. Stat. Sol. A 154, 789–796 (1996)

    Google Scholar 

  35. A.A. Kaplyanskii, Noncubic centres in cubic crystals and their spectra in external fields. J. Phys. 28 (C4, suppl. no 8–9), C4-39–C4-48 (1967)

    Google Scholar 

  36. Y.H. Lee, P.R. Brosious, J.W. Corbett, New EPR spectra in neutron-irradiated silicon (II). Radiat. Eff. 22, 169–172 (1974)

    Google Scholar 

  37. Y.H. Lee, J.W. Corbett, EPR studies in neutron-irradiated silicon: A negative charge state of a nonplanar five-vacancy cluster (V 5  − ). Phys. Rev. B 8, 2810–2826 (1973)

    Google Scholar 

  38. Z. Ciechanowska, G. Davies, E.C. Lightowlers, Uniaxial stress measurements on the 1039.8 meV zero-phonon line in irradiated silicon. Solid State Commun. 49, 427–431 (1984)

    Google Scholar 

  39. A.S. Kaminskii, B.M. Leiferov, A.N. Safonov, Excitons bound to defect complexes in silicon. Sov. Phys. Solid State 29, 551–556 (1987)

    Google Scholar 

  40. E.S. Johnson, W.D. Compton, Recombination luminescence in irradiated silicon – effects of thermal annealing and lithium impurity. Radiat. Eff. 9, 89–92 (1971)

    Google Scholar 

  41. B. Hourahine, R. Jones, A.N. Safonov, S. Öberg, P.R. Briddon, S.K. Estreicher, Identifiction of the hexavacancy in silicon with the B80 4 optical center. Phys. Rev. B 61, 12584–12597 (2000)

    Google Scholar 

  42. G.D. Watkins, J.W. Corbett, Defects in irradiated silicon: electron paramagnetic resonance and electron-nuclear double resonance of the Si-E-center. Phys. Rev. 134, A1359–A1377 (1964)

    Google Scholar 

  43. E.L. Elkin, G.D. Watkins, Defects in irradiated silicon: electron paramagnetic resonance and electron-nuclear double resonance of the arsenic- and antimony-vacancy pairs. Phys. Rev. 174, 881–897 (1968)

    Google Scholar 

  44. G.D. Watkins, Vacancies and interstitials and their interactions with impurities in c-Si, in Properties of Crystalline Silicon, EMIS Datareviews Series No 20, ed. by R. Hull (INSPEC, London, 1999), pp. 643–652

    Google Scholar 

  45. G.D. Watkins, Optical properties of group-V atom-vacancy pairs in silicon. Radiat. Eff. Defect. Sol. 111–112, 487–500 (1989)

    Google Scholar 

  46. G.D. Watkins, Understanding the Jahn-Teller distortion for the divacancy and the vacancy-group-V-atom pair in silicon. Physica B 376–377, 50–53 (2006)

    Google Scholar 

  47. K. Saarinen, J. Nissilä, H. Kauppinen, M. Hakala, M.J. Puska, P. Hautojärvi, C. Corbel, Identification of vacancy-impurity complexes in highly n-type Si. Phys. Rev. Lett. 82, 1883–1886 (1999)

    Google Scholar 

  48. C.S. Chen, J.C. Corelli, G.D. Watkins, Radiation-produced absorption bands in silicon: piezospectroscopic study of a group-V atom-defect complex. Phys. Rev. B 5, 510–526 (1972)

    Google Scholar 

  49. M. Suezawa, N. Fukata, T. Mchedlidze, A. Kasuya, Many optical absorption peaks observed in electron-irradiated n-type Si. J. Appl. Phys. 92, 6561–6566 (2002)

    Google Scholar 

  50. C.S. Chen, J.C. Corelli, Optical study of lithium defect complexes in irradiated silicon. J. Appl. Phys. 44, 2483–2489 (1973)

    Google Scholar 

  51. F. Carton-Merlet, Doctoral Thesis, University of Paris (1979)

    Google Scholar 

  52. E.C. Lightowlers, L.T. Canham, G. Davies, M.L.W. Thewalt, S.P. Watkins, Lithium and lithium-carbon isoelectronic complexes in silicon: luminescence decay-time, absorption, isotope splitting, and Zeeman measurements. Phys. Rev. B 29, 4517–4523 (1984)

    Google Scholar 

  53. L. Canham, G. Davies, E.C. Lightowlers, G.W. Blackmore, Complex isotope splitting of the no-phonon lines associated with exciton decay at a four-lithium-atom isoelectronic centre in silicon. Physica 117B-118B, 119–121 (1983)

    Google Scholar 

  54. G. Davies, L. Canham, E.C. Lightowlers, Magnetic and uniaxial stress perturbations of optical transitions at a four Li atom complex in Si. J. Phys. C 17, L173–L178 (1984)

    Google Scholar 

  55. G.G. DeLeo, W.B. Fowler, G.D. Watkins, Electronic structure of hydrogen- and alkali-metal-vacancy complexes in silicon. Phys. Rev. B 29, 1819–1823 (1984)

    Google Scholar 

  56. G.S. Myakenkaya, G.L. Gutsev, N.P. Afanaseva, V.A. Evseev, R.F. Konopleva, Study of lithium interaction with lattice defects in silicon. Phys. Stat. Sol. B 161, 91–103 (1990)

    Google Scholar 

  57. J.F. Zheng, M. Stavola, G.D. Watkins, Structure of the neutral charge state of interstitial carbon in silicon, in 22nd Internat. Conf. Phys. Semicond., ed. by D.J. Lockwood (World Scientific, Singapore, 1995), pp. 2363–2366

    Google Scholar 

  58. G.D. Watkins, K.L. Brower, EPR observation of the isolated interstitial carbon atom in silicon. Phys. Rev. Lett. 36, 1329–1332 (1976)

    Google Scholar 

  59. L.W. Song, G.D. Watkins, EPR identification of the single acceptor state of interstitial carbon in silicon. Phys. Rev. B 42, 5759–5764 (1990)

    Google Scholar 

  60. L.I. Khirunenko, V.Yu. Pomozov , M.G. Sosnin, M.O. Trypachko, A. Duvanskii, V.J.B. Torres, J. Coutinho, R. Jones, P.R. Briddon, N.V. Abrosimov, H. Riemann, Local vibrations of interstitial carbon in SiGe alloys. Mater. Sci. Semicond. Process. 9, 514–519 (2006)

    Google Scholar 

  61. R. Woolley, E.C. Lightowlers, A.K. Tipping, M. Claybourn, R.C. Newman, Electronic and vibrational absorption of interstitial carbon in silicon. Mater. Sci. Forum 10–12, 929–934 (1986)

    Google Scholar 

  62. E.V. Lavrov, M. Fanciulli, M. Kaukonen, R. Jones, P.R. Briddon, Carbon-tin defects in silicon. Phys. Rev. B 64, 125212/1–5 (2001)

    Google Scholar 

  63. K. Thonke, A. Teschner, R. Sauer, New photoluminescence defect spectra in silicon irradiated at 100 K: Observation of interstitial carbon? Solid State Commun. 61, 241–244 (1987)

    Google Scholar 

  64. A.V. Yukhnevich, Radiative capture of holes by A-centres in silicon. Sov. Phys. Solid State 7, 322–323 (1965)

    Google Scholar 

  65. A.R. Bean, R.C. Newman, R.S. Smith, Electron irradiation damage in silicon containing carbon and oxygen. J. Phys. Chem. Solids 31, 739–751 (1970)

    Google Scholar 

  66. G. Davies, M.C. do Carmo, Isotope effects on the 969 meV vibronic band in silicon. J. Phys. C 14, L687–L691 (1981)

    Google Scholar 

  67. K. Thonke, H. Klemisch, J. Weber, R. Sauer, New model of the irradiation-induced 0.97-eV (G) line in silicon: a C s  − Si ∗  complex. Phys. Rev. B 24, 5874–5886 (1981)

    Google Scholar 

  68. G. Davies, H. Brian, E.C. Lightowlers, K. Barraclough, M.F. Thomaz, The temperature dependence of the 969 meV “G” optical transition in silicon. Semicond. Sci. Technol. 4, 200–206 (1989)

    Google Scholar 

  69. G. Davies, E.C. Lightowlers, M. do Carmo, Carbon-related vibronic bands in electron-irradiated silicon. J. Phys. C 16, 5503–5515 (1983)

    Google Scholar 

  70. S. Hayama, G. Davies, J. Tan, J. Coutinho, R. Jones, K.M. Itoh, Lattice isotope effects on optical transitions in silicon. Phys. Rev. B 70, 035202/1–9 (2004)

    Google Scholar 

  71. A.V. Yukhnevich, A.V. Mudryi, Deformation splitting of the 0.97 eV luminescence line of irradiated silicon. Sov. Phys. Semicond. 7, 815–816 (1973)

    Google Scholar 

  72. C.P. Foy, M.C. do Carmo, G. Davies, E.C. Lightowlers, Uniaxial stress measurements on the 0.97 eV line in urradiated silicon. J. Phys. C. 14, L7–L12 (1981)

    Google Scholar 

  73. G.D. Watkins, A review of the EPR studies in irradiated silicon, in Radiation Damages in Semiconductors, ed. by P. Baruch (Dunod, Paris, 1965), pp. 99–113

    Google Scholar 

  74. K.L. Brower, EPR of a Jahn-Teller distorted < 111 > carbon interstitialcy in irradiated silicon. Phys. Rev. B 9, 2607–2617 (1974). Erratum: Phys. Rev. B 17, 4130 (1978)

    Google Scholar 

  75. K.P. O’Donnell, K.M. Lee, G.D. Watkins, Origin of the 0.97 eV luminescence in irradiated silicon. Physica B 116, 258–263 (1983)

    Google Scholar 

  76. G. Davies, K.T. Kun, Annealing the di-carbon radiation damage centre in silicon. Semicond. Sci. Technol. 4, 327–330 (1989)

    Google Scholar 

  77. G. Davies, E.C. Lightowlers, M.C. do Carmo, J.G. Wilkes, G.R. Wolstenholme, The production and destruction of the C-related 969 meV absorption band in Si. Solid State Commun. 50, 1057–1061 (1984)

    Google Scholar 

  78. G. Davies, R.C. Newman, Carbon in mono-crystalline silicon, in Handbook on Semiconductors, vol. 3b, ed. by S. Mahajan (North Holland, Amsterdam, 1994), pp. 1557–1640

    Google Scholar 

  79. G. Davies, E.C. Lightowlers, R. Woolley, R.C. Newman, A.S. Oates, Carbon, oxygen and silicon isotope effects in the optical spectra of electron-irradiated Czochralski silicon, in Proc. 13th Internat. Conf. Defects Semicond., ed. by L.C. Kimerling, J.M. Parsey, Jr. (The Metallurgical Society of AIME, New York, 1985), pp. 725–731

    Google Scholar 

  80. W. Kürner, R. Sauer, A. Dörnen, K. Thonke, Structure of the 0.767-eV oxygen-carbon luminescence defect in 450 ∘ C thermally annealed Czochralski-grown silicon. Phys. Rev. B 39, 13327–13337 (1989)

    Google Scholar 

  81. A.P.C. Hare, G. Davies, A.T. Collins, The temperature dependence of vibronic spectra in irradiated silicon. J. Phys. C 5, 1265–1276 (1972)

    Google Scholar 

  82. C.P. Foy, Uniaxial stress analysis of the 0.79 eV vibronic band in irradiated silicon. J. Phys. C 15, 2059–2067 (1982)

    Google Scholar 

  83. C.P. Foy, Optical studies of vibronic bands in silicon. Physica B 116, 276–280 (1982)

    Google Scholar 

  84. D.J. Backlund, S.K. Estreicher, Theoretical study of the CiOi and ISiCiOi defects in Si. Physica. B 401–402, 163–166 (2007)

    Google Scholar 

  85. A.V. Yukhnevich, V.D. Tkachev, Optical analog of the Mössbauer effect in silicon. Sov. Phys Sol. State 8, 1004–1005 (1966)

    Google Scholar 

  86. G. Davies, E.C. Lightowlers, M. Stavola, K. Bergman, B. Svensson, The 3942-cm − 1 optical band in irradiated silicon. Phys. Rev. B 35, 2755–2766 (1987)

    Google Scholar 

  87. G. Davies, E.C. Lightowlers, R. Woolley, R.C. Newman, A.S. Oates, A model for radiation damage effects in carbon-doped silicon. Semicond. Sci. Technol. 2, 524–532 (1987)

    Google Scholar 

  88. A.T. Collins, The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy. Diam. Relat. Mater. 12, 1976–1983 (2003)

    Google Scholar 

  89. A.T. Collins, G. Davies, H. Kanda, G.S. Woods, Spectroscopic studies of carbon-13 synthetic diamond. J. Phys. C 21, 1363–1376 (1988)

    Google Scholar 

  90. A.T. Collins, Optical centres produced in diamond by radiation damages. New Diam. Frontier Carbon Technol. 17, 47–61 (2007)

    Google Scholar 

  91. Y. Meng, C. Yan, J. Lai, S. Krasnicki, H. Shu, T. Yu, Q. Liang, H. Mao, R. Hemley, Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high temperature annealing. Proc. Natl. Acad. Sci. U.S.A. 105, 17620–17625 (2009)

    Google Scholar 

  92. A.M. Zaitsev, Optical properties of diamond, in Industrial Handbook for Diamond and Diamond Films, ed. by M.A. Prelas, G. Popovici, L.K. Bigelow (Marcel Dekker, New York, 1998), pp. 227–376

    Google Scholar 

  93. A.T. Collins, Things we still don’t know about optical centres in diamond. Diam. Relat. Mater. 8, 1455–1462 (1999)

    Google Scholar 

  94. F. Bridges, G. Davies, J. Robertson, A.M. Stoneham, The spectroscopy of crystal defects: a compendium of defect nomenclature. J. Phys. Cond. Matter 2, 2875–2928 (1990)

    Google Scholar 

  95. J. Walker, Optical absorption and luminescence in diamond. Rep. Prog. Phys. 72, 1605–1659 (1979)

    Google Scholar 

  96. H.E. Smith, G. Davies, M.E. Newton, H. Kanda, Structure of the self-interstitial in diamond. Phys. Rev. B 69, 045203/1–9 (2004)

    Google Scholar 

  97. G. Davies, H. Smith, H. Kanda, Self-interstitial in diamond. Phys. Rev. B 62, 1528–1531 (2000)

    Google Scholar 

  98. D.C. Hunt, D.J. Twitchen, M.E. Newton, J.M. Baker, T.R. Anthony, W.F. Banholzer, S.S. Vagarali, Identification of the neutral carbon < 100 > -split interstitial in diamond. Phys. Rev. B 61, 3863–3876 (2000)

    Google Scholar 

  99. E.A. Faulkner, J.N. Lomer, Electron spin resonance in electron-irradiated silicon. Phil. Mag. 7, 1995–2002 (1962)

    Google Scholar 

  100. J.P. Goss, B.J. Coomer, R. Jones, T.D. Shaw, P.R. Briddon, M. Rayson, S. Öberg, Self-interstitial aggregation in diamond. Phys. Rev. 63, 195208/1–14 (2001)

    Google Scholar 

  101. C.D. Clark, R.W. Ditchburn, H.B. Dyer, The absorption spectra of natural and irradiated diamond. Proc. Roy. Soc. Lond. A 234, 363–381 (1956)

    Google Scholar 

  102. J.W. Steeds, T.J. Davis, S.J. Charles, J.M. Hayes, J.E. Butler, 3H luminescence in electron-irradiated diamond samples and its relationship to self-interstitials. Diam. Relat. Mater. 8, 1847–1852 (1999)

    Google Scholar 

  103. K. Iakoubovskii, G.J. Adriaenssens, N.N. Dogadkin, A.A. Shiryaev, Optical characterization of some irradiation-induced centers in diamond. Diam. Relat. Mater. 10, 18–26 (2001)

    Google Scholar 

  104. D.J. Twitchen, M.E. Newton, J.M. Baker, W.F. Banholzer, T. Anthony, Optical spin polarization in the di- < 001 > -split interstitial (R1) centre in diamond. Diam. Relat. Mater. 8, 1101–1106 (1999)

    Google Scholar 

  105. L. Allers, A.T. Collins, J. Hiscock, The annealing of interstitial-related optical centres in type II natural and CVD diamond. Diam. Relat. Mater. 7, 228–232 (1998)

    Google Scholar 

  106. E.W.J. Mitchell, Diamond Research 1964 (Industrial Diamond Review 1964), p. 13 (1964)

    Google Scholar 

  107. C.D. Clark, C.A. Norris, Photoluminescence associated with the 1.673, 1.944 and 2.468 eV centres in diamond. J. Phys. C 4, 2223–2229 (1971)

    Google Scholar 

  108. S.A. Solin, Photoluminescence of natural type I and type IIb diamonds. Phys. Lett. A 38, 100–102 (1972)

    Google Scholar 

  109. G. Davies, C.P. Foy, Jahn-Teller coupling at the neutral vacancy in diamond. J. Phys. C 13, 2203–2213 (1980)

    Google Scholar 

  110. G. Bosshart, The Dresden Green. J. Gemmology 21, 351–362 (1989)

    Google Scholar 

  111. G. Davies, C.P. Foy, Analysis of uniaxial stress on the GR 2–3 (2.8804, 2.8866 eV) absorption lines in diamond. J. Phys. C 11, L547–L553 (1978)

    Google Scholar 

  112. G. Davies, C.M. Penchina, The effect of uniaxial stress on the GR1 doublet in diamond. Proc. Roy. Soc. Lond. A 338, 359–374 (1974)

    Google Scholar 

  113. C.P. Foy, G. Davies, The GR4 to GR8 absorption lines in diamond. J. Phys. C 13, L25–L28 (1980)

    Google Scholar 

  114. A.T. Collins, High-resolution optical spectra of the GR defect in diamond. J. Phys. C 11, 1957–1964 (1978)

    Google Scholar 

  115. L.A. Vermeulen, C.D. Clark, J. Walker, Optical absorption, photoconductivity and photo-Hall effect in electron-irradiated semiconducting diamond, in Lattice Defects in Semiconductors 1974, Inst. Phys. Conf. Ser. No 23, ed. by F.A. Huntley (The Institute of Physics, Bristol, 1975), pp. 294–300

    Google Scholar 

  116. A. Pu, V. Avalos, S. Dannefaer, Negative charging of mono- and divacancies in IIa diamonds by monochromatic illumination. Diam. Relat. Mater. 10, 585–587 (2001)

    Google Scholar 

  117. A. Zywietz, J. Furthmüller, F. Bechstedt, Neutral vacancies in group-IV semiconductors. Phys. Stat. Sol. B 210, 13–29 (1998)

    Google Scholar 

  118. J. Isoya, H. Kanda, Y. Uchida, S.C. Lawson, S. Yamasaki, H. Itoh, Y. Morita, EPR identification of the negatively charged vacancy in diamond. Phys. Rev. B 45, 1436–1439 (1992)

    Google Scholar 

  119. J.A. Baldwin, Electron paramagnetic resonance investigation of the vacancy in diamond. Phys. Rev. Lett. 10, 220–222 (1963)

    Google Scholar 

  120. G. Davies, S. Lawson, A.T. Collins, A. Mainwood, S.J. Sharp, Vacancy-related centers in diamond. Phys. Rev. B 46, 13157–13170 (1992)

    Google Scholar 

  121. D.J. Twitchen, D.C. Hunt, V. Smart, M.E. Newton, J.M. Baker, Correlation between ND1 optical absorption and the concentration of negative vacancies determined by electron paramagnetic resonance. Diam. Relat. Mater. 8, 1572–1575 (1999)

    Google Scholar 

  122. G. Davies, M.F. Hamer, Optical studies of the 1.945 eV vibronic band in diamond. Proc. R. Soc. London A 348, 285–298 (1976)

    Google Scholar 

  123. C.D. Clark, R.W. Ditchburn, H.B. Dyer, The absorption spectra of irradiated diamonds after heat treatment. Proc. Roy. Soc. Lond. A 237, 75–89 (1956)

    Google Scholar 

  124. D.J. Twitchen, M.E. Newton, J.M. Baker, T.R. Anthony, W.F. Banholzer, Electron-paramagnetic-resonance measurements on the divacancy defect center R4/W6 in diamond. Phys. Rev. B 59, 12900–12910 (1999)

    Google Scholar 

  125. S. Dannefaer, A. Pu, V. Avalos, D. Kerr, Annealing of monovacancies in electron and γ-irradiated diamond. Physica B 308–310, 569–572 (2001)

    Google Scholar 

  126. L. du Preez, PhD thesis, University of the Witwatersrand, Johannesburg (1965)

    Google Scholar 

  127. D. Fisher, D.J.F. Evans, C. Glover, C.J. Kelly, M.J. Sheehy, G.C. Summerton, The vacancy as a probe of the strain in type IIa diamonds. Diam. Relat. Mater. 15, 1636–1642 (2006)

    Google Scholar 

  128. L.S. Hounsome, R. Jones, P.M. Martineau, D. Fisher, M.J. Shaw, P.R. Briddon, S. Öberg, Origin of brown coloration in diamond. Phys. Rev. B 73, 125203/1–8 (2006)

    Google Scholar 

  129. A.T. Collins, H. Kanda, H. Kitakawi, Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment. Diam. Relat. Mater. 9, 113–122 (2000)

    Google Scholar 

  130. R. Jones, Dislocations, vacancies and the brown colour of CVD and natural diamond. Diam. Relat. Mater. 18, 820–826 (2009)

    Google Scholar 

  131. R.G. Farrer, On the substitutional nitrogen donor in diamond. Solid State Commun. 7, 685–688 (1969)

    Google Scholar 

  132. W.V. Smith, P.P. Sorokin, I.L. Gelles, G.J. Lasher, Electron-spin resonance of nitrogen donors in diamond. Phys. Rev. 115, 1546–1552 (1959)

    Google Scholar 

  133. C.A.J. Ammerlaan, Electron paramagnetic resonance studies of native defects in diamond, Defects and Radiation Effects in Semiconductors 1980. Inst. Phys. Conf. Ser. N 059, ed. by R.R. Hasiguti (The Institute of Physics, Bristol, 1981), pp. 81–94

    Google Scholar 

  134. S. Zhang, S.C. Ke, M.E. Zvanut, H.T. Tohver, Y.K. Vohra, g-Tensor for substitutional nitrogen in diamond. Phys. Rev. B 49, 15392–15395 (1994)

    Google Scholar 

  135. M.H. Nazare, A.J. das Neves, Paramagnetic nitrogen in diamond: ultraviolet absorption. J. Phys. C 20, 2713–2722 (1987)

    Google Scholar 

  136. K. Iakoubovskii, G.J. Adriaenssens, Optical transitions at the substitutional nitrogen centre in diamond. J. Phys.: Cond. Matter 12, L77–L81 (2000)

    Google Scholar 

  137. R. Jones, J.P. Goss, P.R. Briddon, Acceptor level of nitrogen in diamond and the 270-nm absorption band. Phys. Rev. B 80, 033205/1–4 (2009)

    Google Scholar 

  138. W.J.P. van Enckevort, E.H. Versteegen, Temperature dependence of the optical absorption by the single-substitutional nitrogen donor in diamond. J. Phys. Cond. Matter 4, 2361–2373 (1992)

    Google Scholar 

  139. H. Sumiya, S. Satoh, High-pressure synthesis of high-purity diamond. Diam. Relat. Mater. 5, 1359–1365 (1996)

    Google Scholar 

  140. F. De Weerdt, A.T. Collins, Determination of the C defect concentration in HPHT annealed type IaA diamonds from UV-VIS absorption spectra. Diam. Relat. Mater. 17, 171–173 (2008)

    Google Scholar 

  141. A.T. Collins, Spectroscopy of defects and transition metals in diamond. Diam. Relat. Mater. 9, 417–423 (2000)

    Google Scholar 

  142. G. Davies, M.H. Nazaré, The ultraviolet absorption by substitutional nitrogen pair in diamond, Defects and Radiation Effects in Semiconductors 1978. Inst. Phys. Conf. Ser. N 046, ed. by J.H. Albany (The Institute of Physics, Bristol, 1979), pp. 334–340

    Google Scholar 

  143. G. Davies, The A nitrogen aggregate in diamond – its symmetry and possible structure. J. Phys. C 9, L537–L542 (1976)

    Google Scholar 

  144. J.A. van Wyk, J.H.N. Loubser, Electron spin resonance of a di-nitrogen centre in Cape yellow type Ia diamonds. J. Phys. C 16, 1501–1506 (1983)

    Google Scholar 

  145. G.D. Tucker, M.E. Newton, J.M. Baker, EPR and 14N electron-nuclear double-resonance of the ionized nearest-neighbor dinitrogen center in diamond. Phys. Rev. B 50, 15586–15596 (1994)

    Google Scholar 

  146. G.S. Woods, Platelets and the infrared absorption of type Ia diamonds. Proc. Roy. Soc. Lond. A 407, 219–238 (1986)

    Google Scholar 

  147. I. Kiflawi, J. Bruley, The nitrogen aggregation sequence and the formation of voidities in diamond. Diam. Relat. Mater. 9, 87–93 (2000)

    Google Scholar 

  148. E.C. Reynhardt, G.L. High, J.A. van Wyk, Temperature dependence of spin-spin and spin-lattice relaxation times of paramagnetic nitrogen defects in diamond. J. Chem. Phys. 109, 8471–8477 (1998)

    Google Scholar 

  149. R.M. Chrenko, R.E. Tuft, H.M. Strong, Transformation of the state of nitrogen in diamond. Nature 270, 141–144 (1977)

    Google Scholar 

  150. T. Evans, Z. Qi, The kinetics of aggregation of nitrogen atoms in diamond. Proc. Roy. Soc. Lond. A 381, 159–178 (1982)

    Google Scholar 

  151. M.R. Brozel, T. Evans, R.F. Stephenson, Partial dissociation of nitrogen aggregates in diamond by high temperature-high pressure treatments. Proc. Roy. Soc. Lond. A 361, 109–127 (1978)

    Google Scholar 

  152. G. Davies, C.M. Welbourn, J.H.N. Loubser, Diamond Research 1978 (Ascot, De Beers Industrial Diamond, Johannesburg, 1978), pp. 23–30

    Google Scholar 

  153. G. Davies, I. Kiflawi, C. Sittas, H. Kanda, The effects of carbon and nitrogen isotopes on the “N3” optical transition in diamond. J. Phys. Cond. Matter 9, 3871–3879 (1997)

    Google Scholar 

  154. A.T. Collins, C.H. Ly, Misidentification of nitrogen-vacancy absorption in diamond. J. Phys. Cond. Matter 14, L467–L471 (2002)

    Google Scholar 

  155. G. Davies, Dynamic Jahn-Teller distortions at trigonal optical centres in diamond. J. Phys. C 12, 2551–2566 (1979)

    Google Scholar 

  156. S. Felton, A.M. Edmonds, M.E. Newton, P.M. Martineau, D. Fisher, D.J. Twitchen, Electron paramagnetic resonance studies of the neutral nitrogen vacancy in diamond. Phys. Rev. B 77, 081201/1–4 (2008)

    Google Scholar 

  157. J.H.N. Loubser, J.A. van Wyk, Electron spin resonance in the study of diamond. Rep. Progr. Phys. 41, 1201–1248 (1978)

    Google Scholar 

  158. N.R.S. Reddy, N.B. Manson, E.R. Krausz, Two-laser spectral hole burning in a colour centre in diamond. J. Lumin. 38, 46–47 (1987)

    Google Scholar 

  159. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.P. Poizat, P. Grangier, Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901/1–4 (2002)

    Google Scholar 

  160. G. Davies, The Jahn-Teller effect and vibronic coupling at deep levels in diamond. Rep. Prog. Phys. 44, 787–830 (1981)

    Google Scholar 

  161. S. Lawson, G. Davies, A.T. Collins, A. Mainwood, The “H2” optical transition in diamond: the effects of uniaxial stress perturbation, temperature and isotopic substitution. J. Phys. Cond. Matter 4, 3439–3452 (1992)

    Google Scholar 

  162. A. Mainwood, A.T. Collins, P. Woad, Isotope dependence of the frequency of localised vibrational modes in diamond. Mater. Sci. Forum 143–147, 29–34 (1994)

    Google Scholar 

  163. A.T. Collins, G. Davies, G.S. Wood, Spectroscopic studies of the H1b and H1c absorption lines in irradiated annealed type-Ia diamonds. J. Phys. C 19, 3933–3944 (1986)

    Google Scholar 

  164. A.T. Collins, A. Connor, C.H. Ly, A. Shareef, P.M. Spear, High-temperature annealing of optical centres in type-I diamond. J. Appl. Phys. 97, 083517/1–10 (2005)

    Google Scholar 

  165. G. Davies, The optical properties of diamond, in Chemistry and Physics of Carbon, vol. 13, ed. by P.L. Walker, P.A. Thrower (Marcel Dekker, New York, 1977), pp. 1–143

    Google Scholar 

  166. A.T. Collins, G.S. Woods, Isotope shifts of nitrogen-related mode vibrations in diamond. J. Phys. C 20, L797–L801 (1987)

    Google Scholar 

  167. J.P. Goss, P.R. Briddon, S. Papagiannidis, R. Jones, Interstitial nitrogen and its complexes in diamond. Phys. Rev. B 70, 235208/1–15 (2004)

    Google Scholar 

  168. V.S. Vavilov, A.A. Gippius, A.M. Zaitsev, B.V. Deryagin, B.V. Spitsyn, A.E. Aleksenko, Investigation of the cathodoluminescence of epitaxial diamond films. Sov. Phys. Semicond. 14, 1078–1079 (1980)

    Google Scholar 

  169. A.M. Zaitsev, V.S. Vavilov, A.A. Gippius, Cathodoluminescence of diamond associated with silicon impurity. Sov. Phys. Lebedev Inst. Rep. 10, 15–17 (1981)

    Google Scholar 

  170. J. Ruan, W.J. Choyke, W.D. Parlow, Si impurity in chemical vapor deposited diamond films. Appl. Phys. Lett. 58, 295–297 (1991)

    Google Scholar 

  171. C.D. Clark, H. Kanda, I. Kiflawi, G. Sittas, Silicon defects in diamond. Phys. Rev. B 51, 16681–16688 (1995)

    Google Scholar 

  172. J.P. Goss, R. Jones, S.J. Breuer, P.R. Briddon, S. Öberg, The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex. Phys. Rev. Lett. 77, 3041–3044 (1996)

    Google Scholar 

  173. G.D. Watkins, Defects in irradiated silicon: EPR of the tin-vacancy pair. Phys. Rev. B 12, 4383–4390 (1975)

    Google Scholar 

  174. S.S. Moliver, Electronic structure of the neutral silicon-vacancy complex in diamond. Tech. Phys. 48, 1449–1453 (2003).

    Google Scholar 

  175. K. Iakoubovskii, A. Stesmans, M. Nesladek, G. Knuyt, ESR and photo-ESR study of defects in CVD diamond. Phys. Stat. Sol. A 193, 448–456 (2002)

    Google Scholar 

  176. A.M. Edmonds, M.E. Newton, P.M. Martineau, D.J. Twitchen, S.D. Williams, Electron paramagnetic resonance studies of silicon-related defects in diamond. Phys. Rev. B 77, 245205/1–11 (2008). Erratum: Phys. Rev. B 82, 249901 (2010)

    Google Scholar 

  177. K. Iakoubovskii, A. Stesmans, Characterization of hydrogen and silicon-related defects in CVD diamond by electron spin resonance. Phys. Rev. B 66, 195207/1–7 (2002)

    Google Scholar 

  178. I. Kiflawi, G. Sittas, H. Kanda, D. Fisher, The irradiation and annealing of Si-doped diamond single crystals. Diam. Relat. Mater. 6, 146–148 (1997)

    Google Scholar 

  179. C. Wang, C. Kurtsiefer, H. Weinfurter, B. Burchard, Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B 39, 37–41 (2006)

    Google Scholar 

  180. R. Williams, Determination of deep centers in conducting gallium arsenide. J. Appl. Phys. 37, 3411–3416 (1966)

    Google Scholar 

  181. G.M. Martin, A. Mitonneau, A. Mircea, Electron traps in bulk and epitaxial GaAs crystals. Electron. Lett. 13, 191–192 (1977)

    Google Scholar 

  182. D. Bois, A. Chantre, Spectroscopies thermique et optique des niveaux profonds: application à l’étude de leur relaxation de réseau. Rev. Phys. Appl. 15, 631–646 (1980)

    Google Scholar 

  183. G.M. Martin, Optical assessment of the main electron trap in bulk semi-insulating gallium arsenide. Appl. Phys. Lett. 39, 747–748 (1981)

    Google Scholar 

  184. E.R. Weber, H. Ennen, U. Kaufmann, J. Windscheif, J. Schneider, T. Wosinski, Identification of AsGa antisites in plastically deformed GaAs. J. Appl. Phys. 53, 6140–6143 (1982)

    Google Scholar 

  185. B.K. Meyer, D.M. Hofmann, J.M. Spaeth, Energy levels and photo-quenching properties of the arsenic anti-site in GaAs. J. Phys. C 20, 2445–2451 (1987)

    Google Scholar 

  186. G.A. Baraff, The mid-gap donor level EL2 in GaAs: recent developments, in Deep Centers in Semiconductors, ed. by S.T. Pantelides (Gordon and Breach, New York, 1992), pp. 547–589

    Google Scholar 

  187. J.T. Schick, C.G. Morgan, P. Papoulias, First-principle study of As interstitials in GaAs: convergence, relaxation, and formation energy. Phys. Rev. B 66, 195302/1–10 (2002)

    Google Scholar 

  188. A.L. Lin, E. Omelianowski, R.H. Bube, Photoelectronic properties of high-resistivity GaAs:O. J. Appl. Phys. 47, 1852–1858 (1976)

    Google Scholar 

  189. G. Vincent, D. Bois, Photocapacitance quenching effect for “oxygen” in GaAs. Solid State Commun. 27, 431–434 (1978)

    Google Scholar 

  190. G. Vincent, D. Bois, A. Chantre, Photoelectric memory effect in GaAs. J. Appl. Phys. 53, 3643–3649 (1982)

    Google Scholar 

  191. G.M. Martin, S. Makram-Ebeid, The mid-gap donor level EL2 in GaAs, in Deep Centers in Semiconductors, ed. by S.T. Pantelides (Gordon and Breach, New York, 1992), pp. 457–545

    Google Scholar 

  192. M. Kaminska, M. Skowronski, J. Lagowski, J.M. Parsey, H.C. Gatos, Intracenter transitions in the dominant deep level (EL2) in GaAs. Appl. Phys. Lett. 43, 302–304 (1983)

    Google Scholar 

  193. M. Baj, P. Dreszer, EL2-intracenter absorption under hydrostatic pressure. Mater. Sci. Forum 38–41, 101–106 (1989)

    Google Scholar 

  194. H.J. von Bardeleben, Metastable state of the EL2 defect in GaAs. Phys. Rev. B 40, 12546–12549 (1989)

    Google Scholar 

  195. M.O. Manasreh, B.C. Covington, Infrared-absorption properties of EL2 in GaAs. Phys. Rev. B 36, 2730–2734 (1987)

    Google Scholar 

  196. C. Hecht, R. Kummer, M. Thoms, A. Winnacker, High-resolution spectroscopy of the zero-phonon line of the deep donor EL2 in GaAs. Phys. Rev. B 55, 13625–13629 (1997)

    Google Scholar 

  197. M. Kaminska, M. Skowronski, W. Kuszko, Identification of the 0.82-eV electron trap, EL2 in GaAs, as an isolated antisite arsenic defect. Phys. Rev. Lett. 55, 2204–2207 (1985)

    Google Scholar 

  198. P. Trautman, J.P. Walczak, J.M. Baranowski, Piezospectroscopic evidence for tetrahedral symmetry of the EL2 defect in GaAs. Phys. Rev. Lett. 41, 3074–3077 (1990)

    Google Scholar 

  199. F. Fuchs, B. Dischler, Infrared studies of the dynamics of transformation between normal and metastable states of the EL2 center in GaAs. Appl. Phys. Lett. 51, 679–681 (1987)

    Google Scholar 

  200. K. Khachaturyan, E.R. Weber, J. Horigan, W. Ford, Interaction of EL2 in semiinsulating GaAs with above bandgap light. Mater. Sci. Forum 83–87, 881–886 (1992)

    Google Scholar 

  201. T. Sugiyama, K. Tanimura, N. Itoh, Recombination-induced metastable to stable transformation of the EL2 center in GaAs. Appl. Phys. Lett. 55, 639–641 (1989)

    Google Scholar 

  202. M. Baj, P. Dreszer, Optical activity of the EL2 metastable state under hydrostatic pressure. Phys. Rev. B 39, 10470–10472 (1989)

    Google Scholar 

  203. M. Baj, P. Dreszer, A. Babinski, Pressure-induced negative charge state of the EL2 defect in its metastable configuration. Phys. Rev. B 43, 2070–2080 (1991)

    Google Scholar 

  204. P. Trautman, J.M. Baranowski, Evidence for trigonal symmetry of the metastable state of the EL2 defect in GaAs. Phys. Rev. Lett. 69, 664–667 (1992)

    Google Scholar 

  205. B.K. Meyer, J.M. Spaeth, M. Scheffler, Optical properties of As-antisite and EL2 defects in GaAs. Phys. Rev. Lett. 52, 851–854 (1984)

    Google Scholar 

  206. M.O. Manasreh, W.C. Mitchel, D.W. Fischer, Observation of the second energy level of the EL2 defect by the infrared absorption technique. Appl. Phys. Lett. 55, 864–866 (1989)

    Google Scholar 

  207. K.H. Wietzke, F.H. Koschnick, K. Krambrock, Correlation of two diamagnetic bands of the magnetic circular dichroism of the optical absorption with EL20 in GaAs. Appl. Phys. Lett. 71, 2133–2135 (1997)

    Google Scholar 

  208. M. Skowronski, J. Lagowski, H.C. Gatos, Optical and transient capacitance study of EL2 in the absence or presence of other midgap levels. J. Appl. Phys. 59, 2451–2456 (1986)

    Google Scholar 

  209. P. Silverberg, P. Omling, L. Samuelson, Hole photoionization cross sections of EL2 in GaAs. Appl. Phys. Lett. 52, 1689–1691 (1988)

    Google Scholar 

  210. F.X. Zach, A. Winnacker, Optical mapping of the total EL2-concentration in semi-insulating GaAs-wafers. Jpn. J Appl. Phys. 28, 957–960 (1989)

    Google Scholar 

  211. D.M. Hofmann, K. Krambrock, B.K. Meyer, J.M. Spaeth, Optical and magneto-optical determination of the EL2 concentrations in semi-insulating GaAs. Semicond. Sci. Technol. 6, 170–174 (1991)

    Google Scholar 

  212. P.W. Yu, Deep-center photoluminescence in undoped semi-insulating GaAs: 0.68 eV band due to the main deep donor. Solid State Commun. 43, 953–956 (1982)

    Google Scholar 

  213. M.K. Nissen, T. Steiner, D.J.S. Beckett, M.L.W. Thewalt, Photoluminescence transitions of the deep EL2 level in gallium arsenide. Phys. Rev. Lett. 65, 2282–2285 (1990)

    Google Scholar 

  214. M. Tajima, Radiative recombination mechanism of EL2 levels in GaAs. Jpn. J. Appl. Phys. 26, L885–L888 (1986)

    Google Scholar 

  215. M.K. Nissen, A. Villemaire, M.L.W. Thewalt, Photoluminescence studies of the EL2 defect in gallium arsenide under external pertubations. Phys. Rev. Lett. 67, 112–115 (1991)

    Google Scholar 

  216. T.W. Steiner, M.K. Nissen, S.M. Wilson, Y. Lacroix, M.L.W. Thewalt, Observation of luminescence from the EL2 metastable state in liquid-encapsulated Czochralski-grown GaAs under hydrostatic pressure. Phys. Rev B 47, 1265–1269 (1993)

    Google Scholar 

  217. A. Fukuyama, T. Ikari, Y. Akashi, M. Suemitsu, Interdefect correlation during thermal recovery of EL2 in semi-insulating GaAs: proposal of a three-center model. Phys. Rev. B 67, 113202/1–4 (2003)

    Google Scholar 

  218. P.P. Fávero, J.M.R. Cruz, New EL2 structural model based on the observation of two sequential photoquenching processes. Eur. Phys. J. B 47, 363–368 (2005)

    Google Scholar 

  219. G. Davies, Jahn-Teller coupling of the 1.04-eV EL2-related center in GaAs. Phys. Rev. B 41, 12303–12306 (1990)

    Google Scholar 

  220. E.M. Omelyanovskii, V.I. Fistul, Transition Metal Impurities in Semiconductors (Adam Hilger, Bristol, 1986)

    Google Scholar 

  221. K.A. Kikoin, V.N. Fleurov, Transition Metal Impurities in Semiconductors (World Scientific, Singapore, 1994)

    Google Scholar 

  222. H.J. Schultz, Optical properties of 3d transition metals in II-VI compounds. J. Cryst. Growth 59, 65–80 (1982)

    Google Scholar 

  223. B. Clerjaud, Transition-metal impurities in III-V compounds. J. Phys. C 18, 3615–3661 (1985)

    Google Scholar 

  224. A. Zunger, Electronic structure of 3d transition-atom impurities in semiconductors. Solid State Phys. 39, 275–464 (1986)

    Google Scholar 

  225. B. Clerjaud, Transition-metal impurities in III-V compounds, in Current Issues in Semiconductor Physics, ed. by M. Stoneham (Adam Hilger, Bristol, 1986), pp. 117–168

    Google Scholar 

  226. H.J. Schultz, Transition metal impurities in semiconductors: experimental situation. Mater. Chem. Phys. 15, 373–384 (1987)

    Google Scholar 

  227. H.J. Schultz, M. Thiede, Optical spectroscopy of 3d 7 and 3d 8 impurity configurations in a wide gap semiconductor (ZnO:Co, Ni, Cu). Phys. Rev. B 35, 18–34 (1987)

    Google Scholar 

  228. A.M. Hennel, Transition metals in III/V compounds, Semiconductors and Semimetals 38, 189–234 (1993)

    Google Scholar 

  229. V.I. Sokolov, Hydrogen-like excitations of 3d transition-element impurities in semiconductors. Semiconductors 28, 329–342 (1994)

    Google Scholar 

  230. E. Malguth, A. Hoffmann, M.R. Philips, Fe in III-V and II-VI semiconductors. Phys. Stat. Sol. B 245, 455–480 (2008)

    Google Scholar 

  231. S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, New York, 1970)

    Google Scholar 

  232. G. Racah, Theory of complex spectra II. Phys. Rev. 62, 438–462 (1942)

    Google Scholar 

  233. S.W. Biernacki, Splitting of 3d levels of iron group impurities in crystals with zincblende structure. Phys. Stat. Sol B 118, 525–533 (1983)

    Google Scholar 

  234. F.S. Ham, Dynamical Jahn-Teller effect in paramagnetic resonance spectra-orbital reduction factors and partial quenching of spin-orbit interaction. Phys. Rev. 138, A1727–A1740 (1965)

    Google Scholar 

  235. F.S. Ham, Effect of linear Jahn-Teller coupling on paramagnetic resonance in a 2E state. Phys. Rev. 166, 307–321 (1968)

    Google Scholar 

  236. M.D. Sturge, The Jahn-Teller effect in solids. Solid State Phys. 20, 91–211 (1967)

    Google Scholar 

  237. R. Englman, The Jahn-Teller Effect in Molecules and Crystals (Wiley, London, 1972)

    Google Scholar 

  238. C.A. Bates, Jahn-Teller effects in paramagnetic crystals. Phys. Rep. 35, 187–304 (1978)

    Google Scholar 

  239. I.B. Bersuker, V.Z. Polinger, Vibronic Interactions in Molecules and Crystals (Springer, Berlin, 1989)

    Google Scholar 

  240. C.A. Bates, K.W.H. Stevens, Localized electron states in semiconductors. Rep. Progr. Phys. 49, 783–823 (1986)

    Google Scholar 

  241. E. Tarhan, I. Miotkowski, S. Rodriguez, A.K. Ramdas, Lyman spectrum of holes bound to substitutional 3d transition metal ions in a III-V host: \(\mathrm{GaAs}({\mathrm{Mn}}^{2+},\ {\mathrm{Co}}^{2+},\ \mathrm{or}\ {\mathrm{Cu}}^{2+})\), \(\mathrm{GaP}({\mathrm{Mn}}^{2+})\) and \(\mathrm{InP}({\mathrm{Mn}}^{2+})\). Phys. Rev. B 67, 195202/1–9 (2003)

    Google Scholar 

  242. J. Schneider, U. Kaufmann, W. Wilkening, M. Bauemler, Electronic structure of neutral manganese acceptor in gallium arsenide. Phys. Rev. Lett. 59, 240–243 (1987)

    Google Scholar 

  243. J. Kreissl, W. Ulrici, M. El-Metoui, A.M. Vasson, A. Vasson, A. Gavaix, Neutral manganese acceptor in GaP: an electron paramagnetic-resonance study. Phys. Rev. B 54, 10508–10515 (1996)

    Google Scholar 

  244. J.J. Krebs, G.H. Stauss, EPR of \({\mathrm{Cr}}^{2+}\) (3d 4) in gallium arsenide: Jahn-Teller distortion and photoinduced charge conversion. Phys. Rev. B 16, 971–973 (1977)

    Google Scholar 

  245. A.S. Abhvani, C.A. Bates, B. Clerjaud, D.R. Pooler, Interpretation of the zero-phonon optical absorption lines associated with substitutional \({\mathrm{Cr}}^{2+}\):GaAs. J. Phys. C 15, 1345–1351 (1982)

    Google Scholar 

  246. A.M. Hennel, W. Szuszkiewicz, M. Balkanski, M. Martinez, B. Clerjaud, Investigation of the absorption of Cr2 +  (3d 4) in GaAs. Phys. Rev. B 23, 3933–3942 (1981)

    Google Scholar 

  247. J.T. Vallin, G.A. Slack, S. Roberts, A.E. Hughes, Infrared absorption in some II–VI compounds doped with Cr. Phys. Rev. B 2, 4313–4333 (1970)

    Google Scholar 

  248. M. Kaminska, J.M. Baranowski, S.M. Uba, J.T. Vallin, Absorption and luminescence of \({\mathrm{Cr}}^{2+}\) (\({\mathrm{d}}^{4}\)) in II-VI compounds. J. Phys. C 12, 2197–2214 (1979)

    Google Scholar 

  249. B. Clerjaud, C. Naud, G. Picoli, Y. Toudic, Chromium absorption in InP. J. Phys. C 17, 6469–6476 (1984)

    Google Scholar 

  250. W. Ulrici, J. Kreissl, Optical absorption and electron paramagnetic resonance of the \({\mathrm{Cr}}^{2+}\) impurity in GaP, in Proc. 23 rd Internat. Conf. Phys. Semicond., ed. by M. Scheffler, R. Zimmermann (World Scientific, Singapore, 1996), pp. 2833–2836

    Google Scholar 

  251. T.F. Deutsch, Absorption coefficient of infrared laser window materials. J. Phys. Chem. Solids 34, 2091–2104 (1973)

    Google Scholar 

  252. B. Deveaud, G. Picoli, B. Lambert, M. Martinez, Luminescence processes at chromium in GaAs. Phys. Rev. B 29, 5749–5763 (1984)

    Google Scholar 

  253. B. Clerjaud, C. Naud, B. Deveaud, B. Lambert, B. Plot, G. Brémond, C. Benjeddou, G. Guillot, A. Nouialhat, The acceptor level of vanadium in III-V compounds. J. Appl. Phys. 58, 4207–4215 (1985)

    Google Scholar 

  254. W. Ulrici, K. Friedland, L. Eaves, D.P. Halliday, Optical and electrical properties of vanadium-doped GaAs. Phys. Stat. Sol. B 131, 719–728 (1985)

    Google Scholar 

  255. D. Côte, Doctoral thesis, Université Pierre et Marie Curie (1988)

    Google Scholar 

  256. D. Ammerlahn, B. Clerjaud, D. Côte, L. Köhne, M. Krause, D. Bimberg, Spectroscopic investigation of neutral niobium in GaAs. Mater. Sci. Forum 258–263, 911–916 (1997)

    Google Scholar 

  257. S. Gabillet, V. Thomas, J.P. Peyrade, J. Barrau, The luminescence at 0.795 eV from GaAs:Nb: a Zeeman spectroscopy. Phys. Lett. A 119, 197–199 (1986)

    Google Scholar 

  258. V. Lauer, G. Brémond, A. Souifi, G. Guillot, K. Chourou, M. Anikin, R. Madar, B. Clerjaud, C. Naud, Electrical and optical characterization on vanadium in 4H and 6H-SiC. Mater. Sci. Eng. B 61–62, 248–252 (1999)

    Google Scholar 

  259. H. Ennen, U. Kaufmann, J. Schneider, Donor-acceptor pairs in GaP and GaAs involving the deep nickel acceptor. Appl. Phys. Lett. 38, 355–357 (1981)

    Google Scholar 

  260. A. Yelisseyev, H. Kanda, Optical centers related to 3d transition metals in diamond. New Diam. Frontier Carbon Technol. 17, 127–178 (2007)

    Google Scholar 

  261. H. Katayama-Yoshida, A. Zunger, Prediction of a low spin-ground state in the \(\mathrm{GaAs} :{ \mathrm{V}}^{2+}\) impurity system. Phys. Rev. B 33, 2961–2964 (1986)

    Google Scholar 

  262. M.J. Caldas, S.K. Figueiredo, A. Fazzio, Theoretical investigation of the electrical and optical activity of vanadium in GaAs. Phys. Rev. B 33, 7102–7109 (1986)

    Google Scholar 

  263. C. Delerue, M. Lannoo, G. Allan, New theoretical approach of transition-metal impurities in semiconductors. Phys. Rev. B 39, 1669–1681 (1989)

    Google Scholar 

  264. D. Ammerlahn, R. Heitz, D. Bimberg, D. Côte, B. Clerjaud, W. Ulrici, Infrared investigation of neutral cobalt in GaP, in Proc. 23 rd Internat. Conf. Phys. Semicond., ed. by M. Scheffler, R. Zimmermann (World Scientific, Singapore, 1996), pp. 2825–2828

    Google Scholar 

  265. R.E. Dietz, H. Kamimura, M.D. Sturge, A. Yariv, Electronic structure of copper impurities in ZnO. Phys. Rev. 132, 1559–1569 (1963)

    Google Scholar 

  266. I. Broser, A. Hoffmann, R. Germer, R. Broser, E. Birkicht, High-resolution optical spectroscopy on nickel ions in II-VI semiconductors: isotope shifts of the \({}^{3}{\mathrm{T}}_{1}\mathrm{(F)} {\leftrightarrows }^{3}{\mathrm{T}}_{1}\mathrm{(P)}\) and \({}^{3}{\mathrm{T}}_{1}\mathrm{(F)} {\leftrightarrows }^{3}{\mathrm{A}}_{2}\mathrm{(F)}\), respectively Ni2 +  transitions in CdS and ZnS crystals. Phys. Rev. B 33, 8196–8206 (1986)

    Google Scholar 

  267. B. Nestler, A. Hoffmann, L.B. Xu, U. Scherz, I. Broser, Investigation of the Jahn-Teller effect through the isotope shift and Zeeman splitting of optical transitions of \(\mathrm{CdS} :{ \mathrm{Ni}}^{2+}\). J. Phys. C 20, 4613–4625 (1987)

    Google Scholar 

  268. B. Clerjaud, D. Côte, F. Gendron, M. Krause, W. Ulrici, Isotopic effects in GaAs:Ni. Mater. Sci. Forum 38–41, 775–778 (1989)

    Google Scholar 

  269. W. Drozdzewicz, A. Hennel, Z. Wasilewski, B. Clerjaud, F. Gendron, C. Porte, R. Germer, Identification of the double acceptor state of isolated nickel in gallium arsenide. Phys. Rev. B 29, 2438–2442 (1984)

    Google Scholar 

  270. B. Clerjaud, Jahn-Teller effect and vibronic interactions. Acta Phys. Polonica A73, 909–923 (1988)

    Google Scholar 

  271. B. Clerjaud, F. Gendron, C. Porte, Chromium-induced up conversion in GaP. Appl. Phys. Lett. 38, 212–214. Erratum: Appl. Phys. Lett. 38, 952 (1981)

    Google Scholar 

  272. R.A. Chapman, G. Hutchinson, Photoexcitation and photoionization of neutral manganese acceptors in gallium arsenide. Phys. Rev. Lett. 18, 443–445. Erratum: Phys. Rev. Lett. 18, 822 (1967)

    Google Scholar 

  273. B. Lambert, B. Clerjaud, C. Naud, B. Deveaud, G. Picoli, Y. Toudic, Photoionization of Mn acceptor in Proc. 13 th Internat. Conf. Defects in Semiconductors, ed. by L.C. Kimerling, J.M. Parsey, Jr. (The Metallurgical Soc. of AIME, New York, 1985), pp 1141–1147

    Google Scholar 

  274. B. Clerjaud, D. Côte, C. Naud, Evidence for hydrogen-transition metal complexes in as-grown indium phosphide. J. Cryst. Growth 83, 190–193 (1987)

    Google Scholar 

  275. K. Thonke, K. Pressel, Charge-transfer transitions of Fe ions in InP. Phys. Rev. B 44, 13418–13425 (1991)

    Google Scholar 

  276. A. Baldereschi, N.O. Lipari, Cubic contributions to the spherical model of shallow acceptor states. Phys. Rev. B 9, 1525–1539 (1974)

    Google Scholar 

  277. T. Wolf, W. Ulrici, D. Côte, B. Clerjaud, D. Bimberg, New evidence for bound states in the charge transfer spectra of transition-metal doped III-V semiconductors. Mater. Sci. Forum 143–147, 317–322 (1994)

    Google Scholar 

  278. A.A. Kopylov, A.N. Pikhtin, Shallow impurity states and the free exciton binding energy in gallium phosphide. Solid State Commun. 26, 735–740 (1978)

    Google Scholar 

  279. B. Clerjaud, A. Gelineau, Jahn-Teller effect in the 2 T 2 state of Cu2 +  in ZnS. Phys. Rev. B 9, 2832–2837 (1974)

    Google Scholar 

  280. G. Armelles, J. Barrau, M. Brousseau, B. Pajot, C. Naud, Effective mass-like states of the deep acceptor level of Au and Pt in silicon. Solid State Commun. 56, 303–305 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Pajot .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pajot, B., Clerjaud, B. (2013). Absorption of Deep Centres and Bound Excitons. In: Optical Absorption of Impurities and Defects in Semiconducting Crystals. Springer Series in Solid-State Sciences, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18018-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18018-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18017-0

  • Online ISBN: 978-3-642-18018-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics