Skip to main content

Instrumental Methods for Absorption Spectroscopy in Solids

  • Chapter
  • First Online:
Optical Absorption of Impurities and Defects in Semiconducting Crystals

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 169))

  • 1527 Accesses

Abstract

The electronic absorption of deep centres is generally located at energies higher than the vibrational absorption of impurity centres, which remains situated in the infrared region of the spectrum. This latter absorption can even go down to the very far infrared when it is associated with pseudo-rotational modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the pump-probe geometry, the two beams are crossed.

References

  1. J.K. Kauppinen, D.J. Moffatt, H.H. Mantsch, D.G. Cameron, Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl. Spectrosc. 35, 271–276 (1981)

    Google Scholar 

  2. H.O. McMahon, Thermal radiation of partially transparent reflecting bodies. J. Opt. Soc. Am. 40, 376–378 (1950)

    Google Scholar 

  3. D.L. Stierwalt, R.F. Potter, Lattice absorption bands observed in silicon by means of spectral emissivity measurements. J. Phys. Chem. Solids 23, 99–102 (1962)

    Google Scholar 

  4. R. Murray, K. Graff, B. Pajot, K. Strijckmans, S. Vandendriessche, B. Griepink, H. Marchandise, Interlaboratory determination of oxygen in silicon for certified reference materials. J. Electrochem. Soc. 139, 3582–3587 (1992)

    Google Scholar 

  5. A. Szabo, Observation of hole burning and cross relaxation effects in ruby. Phys. Rev. B 11, 4512–4517 (1974)

    Google Scholar 

  6. S.P. Love, K. Muro, R.E. Peale, A.J. Sievers, W. Lo, Infrared spectral hole burning of sulfur-hydrogen deep donors in a SiGe crystal. Phys. Rev. B 36, 2950–2953 (1987)

    Google Scholar 

  7. U. Werling, K.F. Renk, Saturation of a resonant phonon-band mode by far-infrared excitation. Phys. Rev. B 39, 1286–1289 (1989)

    Google Scholar 

  8. T. Theiler, H. Navarro, R. Till, F. Keilmann, Saturation of ionization edge absorption by donors in germanium. Appl. Phys. A 56, 22–28 (1993)

    Google Scholar 

  9. M. Budde, G. Lüpke, C. Parks Cheney, N.H. Tolk, L.C. Feldman, Vibrational lifetime of bond-center hydrogen in crystalline silicon. Phys. Rev. Lett. 85, 1452–1455 (2000)

    Google Scholar 

  10. M. Göppert-Mayer, Über elementarakte mit zwei quantensprüngen. Ann. Phys.-Leipzig 9, 273–294 (1931)

    Google Scholar 

  11. W. Kaiser, C. Garett, Two-photon excitation in CaF2 : Eu2 + . Phys. Rev. Lett. 7, 229–231 (1961)

    Google Scholar 

  12. J. Golka, J. Mostowski, Two-photon spectroscopy of shallow donor states in semiconductors. Phys. Rev. B 18, 2755–2760 (1978)

    Google Scholar 

  13. D. Fröhlich, M. Sondergeld, Experimental techniques in two-photon absorption. J. Phys. E 10, 761–766 (1977)

    Google Scholar 

  14. Ch. Uihlein, D. Fröhlich, R. Kenklies, Investigation of exciton fine structure in Cu2O. Phys. Rev. B 23, 2731–2740 (1981)

    Google Scholar 

  15. B. Pajot, Optical Absorption of Impurities and Defects in Semiconducting Crystals. I. Hydrogen-Like Centres (Springer, Berlin, 2010)

    Google Scholar 

  16. W. Eisenmenger, Superconducting tunneling junctions as phonon generators and detectors, in Physical Acoustics, vol. 12, ed. by W.P. Mason, R.N. Thurston (Academic, New York, 1976), pp. 79–153

    Google Scholar 

  17. L.J. Challis, Phonon spectroscopy. Contemp. Phys. 24, 229–250 (1983)

    Google Scholar 

  18. K. Laßmann, Acoustic phonon spectroscopy with superconductor tunnel junctions of low-energy defect excitations in semiconductors, in Advances in Solid State Physics, vol. 37, ed. by R. Helbig (Springer, Berlin, 1995), pp. 79–98

    Google Scholar 

  19. F. Maier, K. Laßmann, Phonon scattering and IR-spectra of oxygen-related defects in gallium arsenide – aspects of quantitative phonon spectroscopy. Physica B 263–264, 122–125 (1999)

    Google Scholar 

  20. L. Genzel, Far-infrared Fourier transform spectroscopy. In Topics in Applied Physics, vol. 74, ed. by G. Grüner (Springer, 1998) pp. 169–220

    Google Scholar 

  21. V.D. Akhmetov, H. Richter, FTIR spectroscopic system with improved sensitivity. Mat. Sci. Semicon. Proc. 9, 92–95 (2006)

    Google Scholar 

  22. P.F. Moulton, Spectroscopic and laser characteristics of Ti : Al 2O3. J. Opt. Soc. Am. B 3, 125–133 (1986)

    Google Scholar 

  23. A.R. Chraplyvy, W.E. Moerner, A.J. Sievers, High-resolution spectroscopy of matrix-isolated ReO4  −  molecules. Opt. Lett. 6, 254–256 (1981)

    Google Scholar 

  24. G.V. Kozlov, A.A. Volkov, Coherent source submillimeter wave spectroscopy. In Topics in Applied Physics, vol. 74, ed. by G. Grüner (Springer, 1998) pp. 51–109

    Google Scholar 

  25. E.M. Gershenzon, G.N. Goltsman, N.G. Ptisina, Submillimeter spectroscopy of semiconductors. Sov. Phys. JETP 37, 299–304 (1973)

    Google Scholar 

  26. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, A. Loidl, Terahertz BWO-spectroscopy. Internat. J. Infrared and Millimeter Waves 26, 1217–1240 (2005)

    Google Scholar 

  27. A. Yang, M. Steger, D. Karaiskaj, M.L.W. Thewalt, M. Cardona, K.M. Itoh, H. Riemann, N.V. Abrosimov, M.F. Churbanov, A.V. Gusev, A.D. Bulanov, A.K. Kaliteevskii, O.N. Godisov, P. Becker, H.J. Pohl, J.W. Ager III, E.E. Haller, Optical detection and ionization of donors in specific electronic and nuclear spin states. Phys. Rev. Lett. 97, 227401 (2006)

    Google Scholar 

  28. W.M. Bullis, Oxygen concentration measurements, in Oxygen in Silicon, Semicond. Semimetals, vol. 42, ed. by F. Shimura (Academic, New York, 1994), pp. 95–152

    Google Scholar 

  29. H. Shirai, Determination of oxygen concentration in single-sided polished Czochralski-grown silicon wafers by p-polarized Brewster angle incidence infrared spectroscopy. J. Electrochem. Soc. 138, 1784–1787 (1991)

    Google Scholar 

  30. H. Saito, H. Shirai, Determination of interstitial oxygen concentration in oxygen-precipitated silicon wafers by low-temperature high-resolution spectroscopy. Jpn. J. Appl. Phys. 34, L1097–L1099 (1995)

    Google Scholar 

  31. L. Podlowski, H. Hoffman, I. Broser, Calorimetric absorption spectroscopy at mK temperatures – an extremely sensitive method to detect non-radiative processes in solids. J. Cryst. Growth 117, 698–703 (1992)

    Google Scholar 

  32. D. Labrie, I.J. Booth, M.L.W. Thewalt, B.P. Clayman, Use of polypropylene for infrared cryogenic windows. Appl. Opt. 25, 171–172 (1986)

    Google Scholar 

  33. A. Brelot, Doctoral thesis, Université Paris VII (1972)

    Google Scholar 

  34. P. Vajda, J. Lori, Low-temperature set-up for electron irradiation and subsequent photoconductive studies of semiconductors. Rev. Sci. Instrum. 40, 690–692 (1969)

    Google Scholar 

  35. V.J. Tekippe, P. Fisher, H.R. Chandrasekhar, A.K. Ramdas, Determination of the deformation-potential constant of the conduction band of silicon from the piezospectroscopy of donors. Phys. Rev. B 6, 2348–2356 (1972)

    Google Scholar 

  36. M. Budde, Doctoral thesis, University of Aarhus (1998)

    Google Scholar 

  37. K. Furuno, A. Onodera, S. Kume, Sapphire-anvil cell for high pressure research. Jpn. J. Appl. Phys. 25, L646–L647 (1986)

    Google Scholar 

  38. A. Jayaraman, Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65–108 (1983)

    Google Scholar 

  39. E.E. Haller, L. Hsu, J.A. Wolk, Far infrared spectroscopy of semiconductors at large hydrostatic pressures. Phys. Stat. Sol. B 198, 153–165 (1996)

    Google Scholar 

  40. L. Hsu, PhD thesis, EO Lawrence Berkeley National Laboratory, University of California, Berkeley (1997)

    Google Scholar 

  41. G.J. Piermarini, S. Block, Ultrahigh pressure diamond anvil cell and several semiconductor phase transition processes in relation to the fixed point pressure scale. Rev. Sci. Instrum. 46, 973–979 (1975)

    Google Scholar 

  42. E. Sterer, M.P. Pasternak, R.D. Taylor, A multipurpose miniature diamond anvil cell. Rev. Sci. Instrum. 61, 1117–1119 (1990)

    Google Scholar 

  43. T.W. Steiner, M.K. Nissen, S.M. Wilson, Y. Lacroix, M.L.W. Thewalt, Observation of luminescence from the EL2 metastable state in liquid encapsulated Czochralski-grown GaAs under hydrostatic pressure. Phys. Rev. B 47, 1265–1269 (1993)

    Google Scholar 

  44. D. Schiferl, D.T. Cromer, R.L. Mills, Crystal structure of nitrogen at 25 kbar and 296 K. High Temp. High Press. 10, 493–496 (1978)

    Google Scholar 

  45. R.A. Forman, G.J. Piermarini, J.D. Barnett, S. Block, Pressure measurements made by the utilization of ruby sharp-line luminescence. Science 176, 284–285 (1972)

    Google Scholar 

  46. S. Zwerdling, B. Lax, L.M. Roth, K.J. Button, Exciton and magnetoabsorption of the direct and indirect transitions in germanium. Phys. Rev. 114, 80–89 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Pajot .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pajot, B., Clerjaud, B. (2013). Instrumental Methods for Absorption Spectroscopy in Solids. In: Optical Absorption of Impurities and Defects in Semiconducting Crystals. Springer Series in Solid-State Sciences, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18018-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18018-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18017-0

  • Online ISBN: 978-3-642-18018-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics