Finding and Visualizing Graph Clusters Using PageRank Optimization

  • Fan Chung Graham
  • Alexander Tsiatas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6516)


We give algorithms for finding graph clusters and drawing graphs, highlighting local community structure within the context of a larger network. For a given graph G, we use the personalized PageRank vectors to determine a set of clusters, by optimizing the jumping parameter α subject to several cluster variance measures in order to capture the graph structure according to PageRank. We then give a graph visualization algorithm for the clusters using PageRank-based coordinates. Several drawings of real-world data are given, illustrating the partition and local community structure.


Voronoi Diagram Spectral Cluster Graph Cluster Voronoi Region Representative Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabási, A.-L., Jeong, H.: Diameter of the World Wide Web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  2. 2.
    Andersen, R., Chung, F.: Detecting sharp drops in PageRank and a simplified local partitioning algorithm. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank vectors. In: Proceedings of the 47th Annual IEEE Symposium on Foundation of Computer Science (FOCS 2006), pp. 475–486 (2006)Google Scholar
  4. 4.
    Brandes, U., Cornelsen, S.: Visual ranking of link structures. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 222–233. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)CrossRefGoogle Scholar
  6. 6.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the Web. Computer Networks 33, 1–6 (2000)CrossRefGoogle Scholar
  7. 7.
    Chung, F., Horn, P., Tsiatas, A.: Distributing antidote using PageRank vectors. Internet Mathematics 6(2), 237–254 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chung, F., Zhao, W.: A sharp PageRank algorithm with applications to edge ranking and graph sparsification (Preprint),
  9. 9.
    Dyer, M.E., Frieze, A.M.: A simple heuristic for the p-centre problem. Operations Research Letters 3(6), 285–288 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eades, P., Feng, Q.: Multilevel visualization of clustered graphs. In: Proceedings of the International Symposium on Graph Drawing, pp. 101–112 (1996)Google Scholar
  11. 11.
    Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30(7), 1575–1584 (2002)CrossRefGoogle Scholar
  12. 12.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM 1999), pp. 251–262 (1999)Google Scholar
  13. 13.
    Fortune, S.: A sweepline algorithm for Voronoi diagrams. In: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 313–322 (1986)Google Scholar
  14. 14.
    Gansner, E., North, C.: An open graph visualization system and its applications to software engineering. Software — Practice and Experience 30(11), 1203–1233 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guruswami, V., Micciancio, D., Regev, O.: The complexity of the covering radius problem on lattices and codes. Computational Complexity 14(2), 90–120 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Harel, D., Koren, Y.: Graph drawing by high-dimensional embedding. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Jeh, G., Widom, J.: Scaling personalized Web search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 271–279 (2003)Google Scholar
  19. 19.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31(1), 7–15 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lloyd, S.: Least square quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54(4), 396–405 (2003)CrossRefGoogle Scholar
  22. 22.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)Google Scholar
  23. 23.
    Mancoridis, S., Mitchell, B.S., Chen, Y., Gansner, E.R.: Bunch: a clustering tool for the recovery and maintenance of software system structures. In: Proceedings of the IEEE International Conference on Software Maintenance, pp. 50–59 (1999)Google Scholar
  24. 24.
    Moody, J.: Peer influence groups: identifying dense clusters in large networks. Social Networks 23(4), 261–283 (2001)CrossRefGoogle Scholar
  25. 25.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)CrossRefGoogle Scholar
  26. 26.
    Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. Advances in Neural Information Processing Systems 14(2), 849–856 (2002)Google Scholar
  27. 27.
    Noack, A.: Modularity clustering is force-directed layout. Physical Review E 79, 026102 (2009)CrossRefGoogle Scholar
  28. 28.
    Parker, G., Franck, G., Ware, C.: Visualization of large nested graphs in 3D: navigation and interaction. Journal of Visual Languages and Computing 9(3), 299–317 (1998)CrossRefGoogle Scholar
  29. 29.
    Rudelson, M., Vershynin, R.: Sampling from large matrices: An approach through geometric functional analysis. Journal of the ACM 54(4), Article 21 (2007)Google Scholar
  30. 30.
    Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fan Chung Graham
    • 1
  • Alexander Tsiatas
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations