Skip to main content

Component Evolution in General Random Intersection Graphs

  • Conference paper
Algorithms and Models for the Web-Graph (WAW 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6516))

Included in the following conference series:

Abstract

Random intersection graphs (RIGs) are an important random structure with algorithmic applications in social networks, epidemic networks, blog readership, and wireless sensor networks. RIGs can be interpreted as a model for large randomly formed non-metric data sets. We analyze the component evolution in general RIGs, giving conditions on the existence and uniqueness of the giant component. Our techniques generalize existing methods for analysis of component evolution: we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts of the study of component evolution in Erdős-Rényi graphs. The major challenge comes from the underlying structure of RIGs, which involves both a set of nodes and a set of attributes, with different probabilities associated with each attribute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. John Wiley & Sons, Inc., New York (2000)

    Book  MATH  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrisch, M.: Component evolution in random intersection graphs. Electr. J. Comb. 14 (2007)

    Google Scholar 

  5. Bernstein, S.N.: On a modification of chebyshevs inequality and of the error formula of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math. 4(25) (1924)

    Google Scholar 

  6. Bloznelis, M., Jaworski, J., Rybarczyk, K.: Component evolution in a secure wireless sensor network. Netw. 53(1), 19–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences of the United States of America 99(25), 15879–15882 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deijfen, M., Kets, W.: Random intersection graphs with tunable degree distribution and clustering. Probab. Eng. Inf. Sci. 23(4), 661–674 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set intersections. Canad. J. Math. 18, 106–112 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Godehardt, E., Jerzy Jaworski, K.R.: Random intersection graphs and classification. In: Advances in Data Analysis, vol. 45, pp. 67–74 (2007)

    Google Scholar 

  11. Eubank, S., Guclu, H., Anil Kumar, V.S., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004)

    Article  Google Scholar 

  12. Fill, J.A., Scheinerman, E.R., Singer-Cohen, K.B.: Random intersection graphs when m = ω(n): An equivalence theorem relating the evolution of the g(n, m, p) and g(n,p) models. Random Struct. Algorithms 16(2), 156–176 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Godehardt, E., Jaworski, J.: Two models of random intersection graphs and their applications. Electronic Notes in Discrete Mathematics 10, 129–132 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guillaume, J.-L., Latapy, M.: Bipartite graphs as models of complex networks. Physica A: Statistical and Theoretical Physics 371(2), 795–813 (2006)

    Article  Google Scholar 

  15. Jaworski, J., Stark, D.: The vertex degree distribution of passive random intersection graph models. Comb. Probab. Comput. 17(4), 549–558 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karoński, M., Scheinerman, E., Singer-Cohen, K.: On random intersection graphs:the subgraph problem. Combinatorics, Probability and Computing 8 (1999)

    Google Scholar 

  17. Lagerås, A.N., Lindholm, M.: A note on the component structure in random intersection graphs. Electronic Journal of Combinatorics 15(1) (2008)

    Google Scholar 

  18. Newman, M.E.J.: Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64(1), 016131 (2001)

    Article  MathSciNet  Google Scholar 

  19. Newman, M.E.J., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E 68(3), 036122 (2003)

    Article  Google Scholar 

  20. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

    Article  Google Scholar 

  21. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: Large independent sets in general random intersection graphs. Theor. Comput. Sci. 406, 215–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nikoletseas, S.E., Raptopoulos, C., Spirakis, P.G.: The existence and efficient construction of large independent sets in general random intersection graphs. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1029–1040. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Nikoletseas, S.E., Raptopoulos, C., Spirakis, P.G.: Expander properties and the cover time of random intersection graphs. Theor. Comput. Sci. 410(50), 5261–5272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. van der Hofstad, R.: Random graphs and complex networks. Lecture notes in preparation, http://www.win.tue.nl/~rhofstad/NotesRGCN.html

  25. Rybarczyk, K.: Equivalence of the random intersection graph and G(n,p) (2009) (submitted), http://arxiv.org/abs/0910.5311

  26. Singer-Cohen, K.: Random intersection graphs. PhD thesis, Johns Hopkins University (1995)

    Google Scholar 

  27. Watts, D.J., Strogatz, S.H.: Collective dynamics of Small-World networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bradonjić, M., Hagberg, A., Hengartner, N.W., Percus, A.G. (2010). Component Evolution in General Random Intersection Graphs. In: Kumar, R., Sivakumar, D. (eds) Algorithms and Models for the Web-Graph. WAW 2010. Lecture Notes in Computer Science, vol 6516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18009-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18009-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18008-8

  • Online ISBN: 978-3-642-18009-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics