Skip to main content

Signaling Games

Dynamics of Evolution and Learning

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6207))

Introduction

“Let us go down, and there confound their language, that they may not understand one another’s speech” (Genesis 11:1). The state of language confusion described in this passage may be understood as a state of maximal heterogeneity: every possible language is present in a population. It may also be viewed as a state of homogeneity, however; presumably, each possible language is spoken by a very small number of persons, inducing a uniform distribution over the set of languages. Should we expect individuals to stay at such a symmetric state? Or will they rather agree on one language, thereby breaking the symmetry of initial confusion (Skyrms, 1996)?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argiento, R., Pemantle, R., Skyrms, B., Volkov, S.: Learning to signal: Analysis of a micro-level reinforcement model. Stochastic Processes and their Applications 119, 373–390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Barrett, J.A.: Numerical simulations of the Lewis signaling game: Learning strategies, pooling equilibria, and the evolution of grammar. Technical Report MBS 06-09. Institute for Mathematical Behavioral Sciences, University of California, Irvine (2006)

    Google Scholar 

  • Barrett, J.A., Zollman, K.J.: The role of forgetting in the evolution and learning of language. Journal of Experimental and Theortical Artificial Intelligence 21(4), 293–301 (2009)

    Article  MATH  Google Scholar 

  • Bürger, R.: The Mathematical Theory of Selection, Recombination, and Mutation. John Wiley & Sons, New York (2000)

    MATH  Google Scholar 

  • Beggs, A.W.: On the convergence of reinforcement learning. Journal of Economic Theory 122, 1–36 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Bereby-Meyer, Y., Erev, I.: On learning to become a successful loser: A comparison of alternative abstractions of learning processes in the loss domain. Journal of Mathematical Psychology 42, 266–286 (1998)

    Article  MATH  Google Scholar 

  • Berry, D.A., Fristedt, B.: Bandit Problems: Sequential Allocation of Experiments. Chapman and Hall, London (1985)

    Book  MATH  Google Scholar 

  • Blume, A.: Equilibrium refinements in sender receiver games. Journal of Economic Theory 64, 66–77 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Carr, J.: Applications of Centre Manifold Theory. Springer, New York (1981)

    Book  MATH  Google Scholar 

  • Cressman, R.: Evolutionary Dynamics and Extensive Form Games. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  • Erev, I., Roth, A.E.: Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. The American Economic Review 88(4), 848–881 (1998)

    Google Scholar 

  • Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  • Herrnstein, R.J.: On the law of effect. Journal of the Experimental Analysis of Behavior 15, 245–266 (1970)

    Google Scholar 

  • Hofbauer, J.: The selection mutation equation. Journal of Mathematical Biology 23, 41–53 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer, J., Huttegger, S.M.: Selection-mutation dynamics of signaling games with two signals. In: Benz, A., Ebert, C., van Rooij, R. (eds.) Proceedings of the ESSLLI 2007 Workshop on Language, Games, and Evolution (2007)

    Google Scholar 

  • Hofbauer, J., Huttegger, S.M.: Feasibility of communication in binary signaling games. Journal of Theoretical Biology 254, 843–849 (2008)

    Article  MathSciNet  Google Scholar 

  • Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  • Hopkins, E., Posch, M.: Attainability of boundary points under reinforcement learning. Games and Economic Behavior 53, 110–125 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Huttegger, S.M.: Evolution and the explanation of meaning. Philosophy of Science 74, 1–27 (2007a)

    Article  MathSciNet  Google Scholar 

  • Huttegger, S.M.: Evolutionary explanations of indicatives and imperatives. Erkenntnis 66, 409–436 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Huttegger, S.M., Skyrms, B., Smead, R., Zollman, K.J.S.: Evolutionary dynamics of Lewis signaling games: signaling systems vs. partial pooling. Synthese 172(1), 177–191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Jäger, G.: Evolutionary stability conditions for signaling games with costly signals. Journal of Theoretical Biology 253, 131–141 (2008)

    Article  MathSciNet  Google Scholar 

  • Jäger, G., van Rooij, R.: Language structure: biological and social constraints. Synthese 159, 99–130 (2007)

    Article  MATH  Google Scholar 

  • Kuznetsov, Y.A.: Elements of Applied Bifrucation Theory. Springer, New York (2004)

    Book  Google Scholar 

  • Lewis, D.: Convention: A Philosophical Study. Harvard University Press, Harvard (1969)

    Google Scholar 

  • Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  • Milnor, J.: Morse Theory. Princeton University Press, Princeton (1982)

    Google Scholar 

  • Nowak, M., Komarova, N.L., Niyogi, P.: Computational and evolutionary aspects of language. Nature 364, 56–58 (2002)

    Article  Google Scholar 

  • Nowak, M., Sasaaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646–650 (2004)

    Article  Google Scholar 

  • Nowak, M., Sigmund, K.: A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature 417, 611–617 (2002)

    Article  Google Scholar 

  • Pawlowitsch, C.: Finite populations choose an efficient language. Journal of Theoretical Biology 249, 606–617 (2007)

    Article  MathSciNet  Google Scholar 

  • Pawlowitsch, C.: Why evolution does not always lead to an optimal signaling system. Games and Economic Behavior 63, 203–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Quine, W.V.: Truth by Convention. In: Gibson, R.F. (ed.) Quintessence. Basic Readings from the Philosophy of W. V. Quine, pp. 3–30. Belknap Press, Cambridge (1936)

    Google Scholar 

  • Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society 58, 527–535 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Roth, A.E., Erev, I.: Learning in extensive-form games: Experimental data and simple dynamics models in the intermediate term. Games and Economic Behavior 8, 164–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Schuster, P., Sigmund, K.: Replicator Dynamics. Journal of Theoretical Biology 100, 533–538 (1983)

    Article  MathSciNet  Google Scholar 

  • Skyrms, B.: Evolution of the Social Contract. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  • Skyrms, B.: Stability and explanatory significance of some simple evolutionary models. Philosophy of Science 67, 94–113 (2000)

    Article  Google Scholar 

  • Skyrms, B.: Signals: Evolution, Learning, and Information. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  • Steels, L.: Grounding symbols through evolutionary language games. In: Cangelosi, A., Parisi, D. (eds.) Simulating the Evolution of Language, pp. 211–226. Springer, London (2001)

    Google Scholar 

  • Számádo, S., Szathmáry, E.: Selective scenarios for the emergence of natural language. Trends in Ecology and Evolution 21, 555–561 (2006)

    Article  Google Scholar 

  • Taylor, P.D., Jonker, L.: Evolutionarily stable strategies and game dynamics. Mathematical Biosciences 40, 145–156 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Trapa, P.E., Nowak, M.A.: Nash equilibria for an evolutionary langauge game. Journal of Mathematical Biology 41, 172–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Wagner, E.: Communication and structured correlation. Erkenntnis 71, 377–393 (2009)

    Article  Google Scholar 

  • Wärneryd, K.: Evolutionary stability in unanimity games with cheap talk. Economics Letters 36, 375–378 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Young, H.P.: Strategic Learning and its Limits. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  • Zollman, K.J.: Talking to neighbors: The evolution of regional meaning. Philosophy of Science 72, 69–85 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huttegger, S.M., Zollman, K.J.S. (2011). Signaling Games. In: Benz, A., Ebert, C., Jäger, G., van Rooij, R. (eds) Language, Games, and Evolution. Lecture Notes in Computer Science(), vol 6207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18006-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18006-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18005-7

  • Online ISBN: 978-3-642-18006-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics