Skip to main content

Pathophysiology of Polytrauma

  • Chapter
  • First Online:
Book cover The Poly-Traumatized Patient with Fractures

Abstract

The pathophysiology of the polytraumatized patient is a complex phenomenon aiming at the restoration of homeostasis and preservation of life. The initial response to major trauma is dominated by the effort to control the shock. During the subsequent phase of the immune system activation (Systemic Inflammatory Response Syndrome – SIRS – and Counter Anti-inflammatory Response Syndrome – CARS) the organism is trying to restore the physiologic equilibrium. Depending on the characteristics of the initial trauma (first hit) and the impact of actions and interventions that follow (second hit), patients may either recover or develop complications. In cases where the patient is physiologically unstable, our clinical decisions should be governed by the principle of Damage Control Orthopaedics (DCO) in order to minimize the second hit insult. Accordingly, reliable clinical evaluation of the physiologic status of the patient and immunomonitoring are of paramount importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butcher N, Balogh ZJ. The definition of polytrauma: the need for international consensus. Injury. 2009;40 Suppl 4:S12–22.

    Article  PubMed  Google Scholar 

  2. Giannoudis PV, Dinopoulos H, Chalidis B, Hall GM. Surgical stress response. Injury. 2006;37 Suppl 5:S3–9.

    Article  PubMed  Google Scholar 

  3. Smith RM, Giannoudis PV. Trauma and the immune response. J R Soc Med. 1998;91:417–20.

    PubMed  CAS  Google Scholar 

  4. Aosasa S, Ono S, Mochizuki H, et al. Activation of monocytes and endothelial cells depends on the severity of surgical stress. World J Surg. 2000;24:10–6.

    Article  PubMed  CAS  Google Scholar 

  5. Ono S, Aosasa S, Tsujimoto H, et al. Increased monocyte activation in elderly patients after surgical stress. Eur Surg Res. 2001;33:33–8.

    Article  PubMed  CAS  Google Scholar 

  6. Giannoudis PV. Surgical priorities in damage control in polytrauma. J Bone Joint Surg Br. 2003;85:478–83.

    Article  PubMed  CAS  Google Scholar 

  7. Giannoudis PV, Giannoudi M, Stavlas P. Damage control orthopaedics: lessons learned. Injury. 2009;40 Suppl 4:S47–52.

    Article  PubMed  Google Scholar 

  8. Roberts CS, Pape HC, Jones AL, et al. Damage control orthopaedics: evolving concepts in the treatment of patients who have sustained orthopaedic trauma. Instr Course Lect. 2005;54:447–62.

    PubMed  Google Scholar 

  9. Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36:691–709.

    Article  PubMed  Google Scholar 

  10. Pape HC, Tornetta III P, Tarkin I, et al. Timing of fracture fixation in multitrauma patients: the role of early total care and damage control surgery. J Am Acad Orthop Surg. 2009;17:541–9.

    PubMed  Google Scholar 

  11. Smith RM, Conn AK. Prehospital care – scoop and run or stay and play? Injury. 2009;40 Suppl 4:S23–6.

    Article  PubMed  Google Scholar 

  12. Cosgriff N, Moore EE, Sauaia A, et al. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma. 1997;42:857–61; discussion 61–62.

    Article  PubMed  CAS  Google Scholar 

  13. Siegel JH, Rivkind AI, Dalal S, Goodarzi S. Early physiologic predictors of injury severity and death in blunt multiple trauma. Arch Surg. 1990;125:498–508.

    PubMed  CAS  Google Scholar 

  14. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54:1127–30.

    Article  PubMed  Google Scholar 

  15. Gebhard F, Huber-Lang M. Polytrauma – pathophysiology and management principles. Langenbecks Arch Surg. 2008;393:825–31.

    Article  PubMed  CAS  Google Scholar 

  16. Stahel PF, Heyde CE, Wyrwich W, Ertel W. Current concepts of polytrauma management: from ATLS to “damage control”. Orthopade. 2005;34:823–36.

    Article  PubMed  CAS  Google Scholar 

  17. Cirocchi R, Abraha I, Montedori A, et al. Damage control surgery for abdominal trauma. Cochrane Database Syst Rev. 2010;1:CD007438.

    Google Scholar 

  18. Hill AG, Hill GL. Metabolic response to severe injury. Br J Surg. 1998;85:884–90.

    Article  PubMed  CAS  Google Scholar 

  19. Plank LD, Hill GL. Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg. 2000;24:630–8.

    Article  PubMed  CAS  Google Scholar 

  20. Cipolle MD, Pasquale MD, Cerra FB. Secondary organ dysfunction. From clinical perspectives to molecular mediators. Crit Care Clin. 1993;9:261–98.

    PubMed  CAS  Google Scholar 

  21. Giannoudis PV. Current concepts of the inflammatory response after major trauma: an update. Injury. 2003;34:397–404.

    PubMed  CAS  Google Scholar 

  22. Hietbrink F, Koenderman L, Rijkers G, Leenen L. Trauma: the role of the innate immune system. World J Emerg Surg. 2006;1:15.

    Article  PubMed  CAS  Google Scholar 

  23. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38:1336–45.

    Article  PubMed  Google Scholar 

  24. Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005;17:359–65.

    Article  PubMed  CAS  Google Scholar 

  25. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.

    Article  PubMed  CAS  Google Scholar 

  26. El Mezayen R, El Gazzar M, Seeds MC, et al. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol Lett. 2007;111:36–44.

    Article  PubMed  Google Scholar 

  27. Raucci A, Palumbo R, Bianchi ME. HMGB1: a signal of necrosis. Autoimmunity. 2007;40:285–9.

    Article  PubMed  CAS  Google Scholar 

  28. Pugin J. Dear SIRS, the concept of “alarmins” makes a lot of sense! Intensive Care Med. 2008;34:218–21.

    Article  PubMed  Google Scholar 

  29. Levy RM, Mollen KP, Prince JM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1538–44.

    Article  PubMed  CAS  Google Scholar 

  30. Sawa H, Ueda T, Takeyama Y, et al. Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis. World J Gastroenterol. 2006;12:7666–70.

    PubMed  CAS  Google Scholar 

  31. DeLong Jr WG, Born CT. Cytokines in patients with polytrauma. Clin Orthop Relat Res. 2004;422:57–65.

    Article  PubMed  Google Scholar 

  32. Abraham E. Why immunomodulatory therapies have not worked in sepsis. Intensive Care Med. 1999;25:556–66.

    Article  PubMed  CAS  Google Scholar 

  33. Giannoudis PV, Harwood PJ, Loughenbury P, et al. Correlation between IL-6 levels and the systemic inflammatory response score: can an IL-6 cutoff predict a SIRS state? J Trauma. 2008;65:646–52.

    Article  PubMed  CAS  Google Scholar 

  34. Lin E, Calvano SE, Lowry SF. Inflammatory cytokines and cell response in surgery. Surgery. 2000;127:117–26.

    Article  PubMed  CAS  Google Scholar 

  35. Xing Z, Gauldie J, Cox G, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101:311–20.

    Article  PubMed  CAS  Google Scholar 

  36. Riedemann NC, Neff TA, Guo RF, et al. Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. J Immunol. 2003;170:503–7.

    PubMed  CAS  Google Scholar 

  37. Keane MP, Strieter RM. Chemokine signaling in inflammation. Crit Care Med. 2000;28:N13–26.

    Article  PubMed  CAS  Google Scholar 

  38. Choudhry MA, Bland KI, Chaudry IH. Trauma and immune response – effect of gender differences. Injury. 2007;38:1382–91.

    Article  PubMed  Google Scholar 

  39. Bogner V, Kirchhoff C, Baker HV, et al. Gene expression profiles are influenced by ISS, MOF, and clinical outcome in multiple injured patients: a genome-wide comparative analysis. Langenbecks Arch Surg. 2007;392:255–65.

    Article  PubMed  CAS  Google Scholar 

  40. Gundersen Y, Vaagenes P, Thrane I, et al. Response of circulating immune cells to major gunshot injury, haemorrhage, and acute surgery. Injury. 2005;36:949–55.

    Article  PubMed  CAS  Google Scholar 

  41. Liese AM, Siddiqi MQ, Siegel JH, et al. Attenuated monocyte IL-10 production in glucose-6-phosphate dehydrogenase-deficient trauma patients. Shock. 2002;18:18–23.

    Article  PubMed  Google Scholar 

  42. Giannoudis PV, Smith RM, Bellamy MC, et al. Stimulation of the inflammatory system by reamed and unreamed nailing of femoral fractures. An analysis of the second hit. J Bone Joint Surg Br. 1999;81:356–61.

    Article  PubMed  CAS  Google Scholar 

  43. Morley JR, Smith RM, Pape HC, et al. Stimulation of the local femoral inflammatory response to fracture and intramedullary reaming: a preliminary study of the source of the second hit phenomenon. J Bone Joint Surg Br. 2008;90:393–9.

    PubMed  CAS  Google Scholar 

  44. Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996;24:1125–8.

    Article  PubMed  CAS  Google Scholar 

  45. Schroder O, Laun RA, Held B, et al. Association of interleukin-10 promoter polymorphism with the incidence of multiple organ dysfunction following major trauma: results of a prospective pilot study. Shock. 2004;21:306–10.

    Article  PubMed  Google Scholar 

  46. Bochicchio GV, Napolitano LM, Joshi M, et al. Systemic inflammatory response syndrome score at admission independently predicts infection in blunt trauma patients. J Trauma. 2001;50:817–20.

    Article  PubMed  CAS  Google Scholar 

  47. Donnelly SC, MacGregor I, Zamani A, et al. Plasma elastase levels and the development of the adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151:1428–33.

    PubMed  CAS  Google Scholar 

  48. Giannoudis PV, Smith RM, Windsor AC, et al. Monocyte human leukocyte antigen-DR expression correlates with intrapulmonary shunting after major trauma. Am J Surg. 1999;177:454–9.

    Article  PubMed  CAS  Google Scholar 

  49. Harwood PJ, Giannoudis PV, van Griensven M, et al. Alterations in the systemic inflammatory response after early total care and damage control procedures for femoral shaft fracture in severely injured patients. J Trauma. 2005;58:446–52; discussion 52–54.

    Article  PubMed  Google Scholar 

  50. Nast-Kolb D, Waydhas C, Gippner-Steppert C, et al. Indicators of the posttraumatic inflammatory response correlate with organ failure in patients with multiple injuries. J Trauma. 1997;42:446–54; discussion 54–55.

    Article  PubMed  CAS  Google Scholar 

  51. Pape HC, Tsukamoto T, Kobbe P, et al. Assessment of the clinical course with inflammatory parameters. Injury. 2007;38:1358–64.

    Article  PubMed  Google Scholar 

  52. Partrick DA, Moore EE, Moore FA, et al. Release of anti-inflammatory mediators after major torso trauma correlates with the development of postinjury multiple organ failure. Am J Surg. 1999;178:564–9.

    Article  PubMed  CAS  Google Scholar 

  53. Wanner GA, Keel M, Steckholzer U, et al. Relationship between procalcitonin plasma levels and severity of injury, sepsis, organ failure, and mortality in injured patients. Crit Care Med. 2000;28:950–7.

    Article  PubMed  CAS  Google Scholar 

  54. Rossaint R, Cerny V, Coats TJ, et al. Key issues in advanced bleeding care in trauma. Shock. 2006;26:322–31.

    Article  PubMed  Google Scholar 

  55. Sears BW, Stover MD, Callaci J. Pathoanatomy and clinical correlates of the immunoinflammatory response following orthopaedic trauma. J Am Acad Orthop Surg. 2009;17:255–65.

    PubMed  Google Scholar 

  56. Riche F, Panis Y, Laisne MJ, et al. High tumor necrosis factor serum level is associated with increased survival in patients with abdominal septic shock: a prospective study in 59 patients. Surgery. 1996;120:801–7.

    Article  PubMed  CAS  Google Scholar 

  57. Ayala A, Ertel W, Chaudry IH. Trauma-induced suppression of antigen presentation and expression of major histocompatibility class II antigen complex in leukocytes. Shock. 1996;5:79–90.

    Article  PubMed  CAS  Google Scholar 

  58. Casl MT, Coen D, Simic D. Serum amyloid A protein in the prediction of postburn complications and fatal outcome in patients with severe burns. Eur J Clin Chem Clin Biochem. 1996;34:31–5.

    PubMed  CAS  Google Scholar 

  59. Dehne MG, Sablotzki A, Hoffmann A, et al. Alterations of acute phase reaction and cytokine production in patients following severe burn injury. Burns. 2002;28:535–42.

    Article  PubMed  Google Scholar 

  60. Spies M, Wolf SE, Barrow RE, et al. Modulation of types I and II acute phase reactants with insulin-like growth ­factor-1/binding protein-3 complex in severely burned children. Crit Care Med. 2002;30:83–8.

    Article  PubMed  CAS  Google Scholar 

  61. Guillou PJ. Biological variation in the development of sepsis after surgery or trauma. Lancet. 1993;342:217–20.

    Article  PubMed  CAS  Google Scholar 

  62. Pape HC, van Griensven M, Rice J, et al. Major secondary surgery in blunt trauma patients and perioperative cytokine liberation: determination of the clinical relevance of biochemical markers. J Trauma. 2001;50:989–1000.

    Article  PubMed  CAS  Google Scholar 

  63. Barber RC, Chang LY, Purdue GF, et al. Detecting genetic predisposition for complicated clinical outcomes after burn injury. Burns. 2006;32:821–7.

    Article  PubMed  CAS  Google Scholar 

  64. Giannoudis PV, Tosounidis TI, Kanakaris NK, Kontakis G. Quantification and characterisation of endothelial injury after trauma. Injury. 2007;38:1373–81.

    Article  PubMed  Google Scholar 

  65. Hildebrand F, Pape HC, van Griensven M, et al. Genetic predisposition for a compromised immune system after multiple trauma. Shock. 2005;24:518–22.

    Article  PubMed  CAS  Google Scholar 

  66. Giannoudis PV, van Griensven M, Tsiridis E, Pape HC. The genetic predisposition to adverse outcome after trauma. J Bone Joint Surg Br. 2007;89:1273–9.

    Article  PubMed  CAS  Google Scholar 

  67. Abraham E. Host defense abnormalities after hemorrhage, trauma, and burns. Crit Care Med. 1989;17:934–9.

    Article  PubMed  CAS  Google Scholar 

  68. Nadel S. Helping to understand studies examining genetic susceptibility to sepsis. Clin Exp Immunol. 2002;127:191–2.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter V. Giannoudis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tosounidis, T., Giannoudis, P.V. (2011). Pathophysiology of Polytrauma. In: Pape, HC., Sanders, R., Borrelli, Jr., J. (eds) The Poly-Traumatized Patient with Fractures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17986-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17986-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17985-3

  • Online ISBN: 978-3-642-17986-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics