Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 831))

  • 1523 Accesses

Abstract

In this chapter, elastic scattering or diffraction by light particles described in terms of quantum trajectories is carried out. In particular, how the so-called quantum turning points are related to the effective surface corrugation and/or electron density of the surface and how resonance processes can be interpreted in terms of a causal theory. For this end, a minimum background of quantum elastic scattering on surfaces is provided for a better understanding of the problems tackled in the time-independent and time-dependent contexts. It is very instructive to analyze the classical limit of the quantum trajectories by increasing the particle mass in order to see if classical trajectories are ultimately recovered. Finally, a general description of the classical, elastic and inelastic scattering is provided for completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to the translational symmetry of the potential surface, trajectories with impact parameters differing an integer amount of unit cells are identical.

References

  1. Lapujoulade, J.: Defect structures at surfaces. In: Bortolani, V., March, N.H., Tosi, M.P. (eds.) Interaction of Atoms and Molecules with Solid Surfaces, pp. 381–406. Plenum Press, New York (1990)

    Chapter  Google Scholar 

  2. Kern, K., Comsa, G.: Helium-scattering studies of the dynamics and phase transitions of surfaces. Adv. Chem. Phys. 76, 211–280 (1989)

    Article  Google Scholar 

  3. Toennies, J.P.: Phonon interactions in atom scattering from surfaces. In: Benedek, G., Valbusa, U. (eds.) Dynamics of Gas-Surface Interactions, pp. 208–226. Springer, Berlin (1982)

    Chapter  Google Scholar 

  4. Toennies, J.P.: Phonon inelastic scattering of He atoms from single crystal surfaces. J. Vac. Sci. Technol. A 2, 1055–1065 (1984)

    Article  ADS  Google Scholar 

  5. Hulpke, E.: Helium Atom Scattering from Surfaces. Springer, Berlin (1992)

    Book  Google Scholar 

  6. Comsa, G.: The coherence length in molecular and electron beam diffraction. In: Benedek, G., Valbusa, U. (eds.) Dynamics of Gas-Surface Interactions, pp. 79–83. Springer, Berlin (1982)

    Chapter  Google Scholar 

  7. Engel, T., Rieder, K.-H.: Structural studies of surfaces with atomic and molecular beam diffraction. In: Heinz, K., Müller, K., Engel, T., Rieder, K.-H. (eds.) Structural Studies of Surfaces. Springer Tracts in Modern Physics, vol. 91, pp. 55–180. Springer, Berlin (1982)

    Chapter  Google Scholar 

  8. Esbjerg, N., Nørskov, J.K.: Dependence of the He-scattering potential at surfaces on the surface-electron-density profile. Phys. Rev. Lett. 45, 807–810 (1980)

    Article  ADS  Google Scholar 

  9. Gorse, D., Salanon, B., Fabre, F., Kara, A., Perreau, J., Armand, G., Lapujoulade, J.: Diffraction of helium from Cu(110), (113), (115) and (117); Interaction potential and surfaces. Surf. Sci. 147, 611–646 (1984)

    Article  ADS  Google Scholar 

  10. Farías, D., Rieder, K.-H.: Atomic beam diffraction from solid surfaces. Rep. Prog. Phys. 61, 1575–1664 (1998)

    Article  ADS  Google Scholar 

  11. Hernández, M., Miret-Artés, S., Villarreal, P., Delgado-Barrio, G.: Study of the selective adsorption phenomenon in the 4He/Cu(11α) (with α=0,3,5,7) elastic scattering: The critical kinematic effect. Surf. Sci. 274, 21–34 (1992)

    Article  ADS  Google Scholar 

  12. Hernández, M., Miret-Artés, S., Villarreal, P., Delgado-Barrio, G.: Selective adsorption resonances at rainbow conditions in the scattering of atoms by stepped surfaces: application to the 4He/Cu(117) system. Surf. Sci. 290, L693–L698 (1993)

    Article  Google Scholar 

  13. Sanz, A.S., Miret-Artés, S.: Selective adsorption resonances: Quantum and stochastic approaches. Phys. Rep. 451, 37–154 (2007)

    Article  ADS  Google Scholar 

  14. Hernández, M., Roncero, O., Miret-Artés, S., Villarreal, P., Delgado-Barrio, G.: Study of the diffraction mediated selective adsorption through the close-coupling and diabatic distorted wave approximation: Application to the 4He–Cu(110) system. J. Chem. Phys. 90, 3823–3830 (1989)

    Article  ADS  Google Scholar 

  15. Hernández, M., Miret-Artés, S., Villarreal, P., Delgado-Barrio, G.: Enhancement of resonance features at critical values of the incidence parameters in gas atom-surface elastic scattering: the 4He–Cu(110) example. Surf. Sci. 251/252, 369–372 (1991)

    Article  ADS  Google Scholar 

  16. Miret-Artés, S., Toennies, J.P., Witte, G.: Surface-scattering study of the interaction potential of He atoms with the step edges of the Cu(211) and Cu(511) vicinal surfaces. Phys. Rev. B 54, 5881–5892 (1996)

    Article  ADS  Google Scholar 

  17. Taylor, J.R.: Scattering Theory. Wiley, New York (1972)

    Google Scholar 

  18. Hernández, M.I., Campos-Martínez, J., Miret-Artés, S., Coalson, R.D.: Lifetimes of selective-adsorption resonances in atom-surface scattering. Phys. Rev. B 49, 8300–8309 (1994)

    Article  ADS  Google Scholar 

  19. Sanz, A.S., Miret-Artés, S.: Quantum trajectories in elastic atom-surface scattering: Threshold and selective adsorption resonances. J. Chem. Phys. 122, 014702(1–12) (2005)

    Article  ADS  Google Scholar 

  20. Sanz, A.S., Borondo, F., Miret-Artés, S.: Causal trajectories description of atom diffraction by surfaces. Phys. Rev. B 61, 7743–7751 (2000)

    Article  ADS  Google Scholar 

  21. Guenther, R.: Modern Optics. Wiley, New York (1990)

    Google Scholar 

  22. Drolshagen, G., Heller, E.J.: A time dependent wave packet approach to three-dimensional gas-surface scattering. J. Chem. Phys. 79, 2072–2082 (1983)

    Article  ADS  Google Scholar 

  23. Child, M.S.: Semiclassical Mechanics with Molecular Applications. Clarendon Press, Oxford (1974)

    Google Scholar 

  24. Guantes, R., Sanz, A.S., Margalef-Roig, J., Miret-Artés, S.: Atom-surface diffraction: A trajectory description. Surf. Sci. Rep. 53, 199–330 (2004)

    Article  ADS  Google Scholar 

  25. Sanz, A.S., Borondo, F., Miret-Artés, S.: On the classical limit in atom-surface scattering. Europhys. Lett. 55, 303–309 (2001)

    Article  ADS  Google Scholar 

  26. Knauer, F., Stern, O.: Intensitaetsmessungen an Molekularstrahlen von Gasen. Z. Phys. 53, 766–778 (1929)

    Article  ADS  Google Scholar 

  27. Estermann, I., Stern, O.: Beugung von Molekularstrahlen. Z. Phys. 61, 95–125 (1930)

    Article  ADS  Google Scholar 

  28. Estermann, I., Frisch, R., Stern, O.: Monochromatisierung der de Broglie-Wellen von Molekularstrahlen. Z. Phys. 73, 348–365 (1931)

    Article  ADS  Google Scholar 

  29. Lennard-Jones, J.E., Devonshire, A.F.: Diffraction and selective adsorption of atoms at crystal surfaces. Nature 137, 1069–1070 (1936)

    Article  ADS  Google Scholar 

  30. Miret-Artés, S., Pollak, E.: Classical theory of atom-surface scattering: The rainbow effect. Surf. Sci. Rep. 67, 161–200 (2012)

    Article  ADS  Google Scholar 

  31. Moix, J.M., Pollak, E.: Heavy atom quantum diffraction by scattering from surfaces. J. Chem. Phys. 134, 011103(1–4) (2011)

    Article  ADS  Google Scholar 

  32. Miret-Artés, S., Daon, S., Pollak, E.: Semiclassical perturbation theory for diffraction in heavy atom surface scattering. J. Chem. Phys. 136, 204707(1–7) (2012)

    Article  ADS  Google Scholar 

  33. Daon, S., Pollak, E., Miret-Artés, S.: Semiclassical perturbation theory for the quantum diffractive scattering of atoms on thermal surfaces. J. Chem. Phys. 136, 201103(1–4) (2012)

    Article  ADS  Google Scholar 

  34. Pollak, E., Miret-Artés, S.: Three dimensional classical theory of rainbow scattering of atoms from surfaces. Chem. Phys. 375, 337–347 (2010)

    Article  ADS  Google Scholar 

  35. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  36. Horsthemke, W., Lefever, R.: Noise-Induced Transitions. Springer, Berlin (1984)

    MATH  Google Scholar 

  37. Georgievskii, Y., Kozhushner, M.A., Pollak, E.: Activated surface diffusion: Are correlated hops the rule or the exception? J. Chem. Phys. 102, 6908–6918 (1995)

    Article  ADS  Google Scholar 

  38. Juaristi, J.I., Alducin, M., Diez-Muiño, R., Busnengo, H.F., Salin, A.: Role of the electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces. Phys. Rev. Lett. 100, 116102(1–4) (2008)

    Article  ADS  Google Scholar 

  39. Luntz, A.C., Makkonen, I., Persson, M., Holloway, S.: Comment on “Role of the electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces”. Phys. Rev. Lett. 102, 109601(1–4) (2009)

    Article  ADS  Google Scholar 

  40. Pollak, E., Grabert, H., Hänggi, P.: Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover problem. J. Chem. Phys. 91, 4073–4087 (1989)

    Article  ADS  Google Scholar 

  41. Pollak, E., Miret-Artés, S.: Classical theory for the in-plane scattering of atoms from corrugated surfaces: Application to the Ar–Ag(111) system. J. Chem. Phys. 130, 194710(1–13) (2009); Erratum. J. Chem. Phys. 132, 049901(1–2) (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanz, Á.S., Miret-Artés, S. (2014). Atom Scattering from Periodic Surfaces. In: A Trajectory Description of Quantum Processes. II. Applications. Lecture Notes in Physics, vol 831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17974-7_6

Download citation

Publish with us

Policies and ethics