Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 831))

  • 1587 Accesses

Abstract

Up to now we have considered quantum systems which are not subject to any external force except for open systems. Such systems are usually associated with translational properties. On the contrary, bound systems generally describe properties related to some internal degrees of freedom (e.g., vibrations, rotations, absorption and emission processes, etc.), which have associated some quantization condition. In this chapter we want to analyze the dynamics of these systems, stressing the fact that not always the concept of trajectories must be understood as describing the evolution of a particle, but it can also refer to some other property. It is quite common to establish such a connection between trajectory and particle, even though the former, strictly speaking, makes reference to the solution of an equation of motion (or alternatively, within a hydrodynamic context, a flow equation). As paradigmatic examples, the harmonic oscillator as well as the nonlinear van der Pol oscillator are analyzed. Finally, in order to deal with nonconventional quantum states, such as quantum fractals, a generalization of Bohmian mechanics is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the wave function (4.47) is a semi-fractal [49] or pre-fractal [50], since it is derived from a convergent series. Pre-fractals are characterized by having a fractal first derivative.

  2. 2.

    The concept of fractal quantum carpet [49] arises from the term quantum carpet (see Chap. 3), which describes the (D+1)-dimensional spacetime patterns generated by (regular) wave functions due to interference (see, for example, [40]).

References

  1. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, Singapore (1968)

    Google Scholar 

  2. Pauling, L., Wilson, E.B.: Introduction to Quantum Mechanics with Applications to Chemistry. Dover, New York (1985)

    Google Scholar 

  3. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37, 863–867 (1926)

    Article  ADS  MATH  Google Scholar 

  4. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 38, 803–840 (1926)

    Article  ADS  Google Scholar 

  5. Born, M.: Physical aspects of quantum mechanics. Nature 119, 354–357 (1927)

    Article  ADS  MATH  Google Scholar 

  6. Born, M.: Quantenmechanik und Statistik. Naturwissenschaften 15, 238–242 (1927)

    Article  ADS  MATH  Google Scholar 

  7. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970)

    Article  ADS  MATH  Google Scholar 

  8. Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  9. Tarozzi, G., van der Merwe, A. (eds.): Open Questions in Quantum Physics. Reidel, Dordrecht (1985)

    Google Scholar 

  10. Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

  11. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1964)

    MATH  Google Scholar 

  12. Mehra, J., Rechenberg, H.: The Historical Development of Quantum Theory. Vol. 1, Part 1. Springer, New York (1982)

    Book  Google Scholar 

  13. Planck, M.: Über das Gesetz dar Energieverteilung im Normalspectrum. Ann. Phys. 309, 553–563 (1901)

    Article  Google Scholar 

  14. Planck, M.: Über die Elementarquanta der Materie und der Elektricität. Ann. Phys. 309, 564–566 (1901)

    Article  Google Scholar 

  15. Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132–148 (1905)

    Article  Google Scholar 

  16. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  17. Luis, A., Sanz, A.S.: Reconciling quantum trajectories and stationary quantum distributions in single-photon polarization states. Phys. Rev. A 87, 063844(1–8) (2013)

    Article  ADS  Google Scholar 

  18. Floyd, E.R.: Bohr-Sommerfeld quantization with the effective action variable. Phys. Rev. D 25, 1547–1551 (1982)

    Article  ADS  Google Scholar 

  19. Floyd, E.R.: Modified potential and Bohm’s quantum-mechanical potential. Phys. Rev. D 26, 1339–1347 (1982)

    Article  ADS  Google Scholar 

  20. Floyd, E.R.: Arbitrary initial conditions of nonlocal hidden-variables. Phys. Rev. D 29, 1842–1844 (1984)

    Article  ADS  Google Scholar 

  21. Floyd, E.R.: Reflection time and the Goos-Hänchen effect for reflection by a semi-infinite rectangular barrier. Found. Phys. Lett. 13, 235–251 (2000)

    Article  MathSciNet  Google Scholar 

  22. Floyd, E.R.: Welcher Weg? A trajectory representation of a quantum Young’s diffraction experiment. Found. Phys. 37, 1403–1420 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Floyd, E.R.: Interference, reduced action, and trajectories. Found. Phys. 37, 1386–1402 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Floyd, E.R.: EPR-Bohr and quantum trajectories: Entanglement and nonlocality. arXiv:1001.4575 (2010)

  25. Poirier, B.: Reconcilling semiclassical and Bohmian mechanics. I. Stationary states. J. Chem. Phys. 121, 4501–4515 (2004)

    Article  ADS  Google Scholar 

  26. Trahan, C., Poirier, B.: Reconcilling semiclassical and Bohmian mechanics. II. Scattering states for discontinuous potentials. J. Chem. Phys. 124, 034115(1–18) (2006)

    Article  ADS  Google Scholar 

  27. Trahan, C., Poirier, B.: Reconcilling semiclassical and Bohmian mechanics. III. Scattering states for continuous potentials. J. Chem. Phys. 124, 034116(1–14) (2006)

    Article  ADS  Google Scholar 

  28. Poirier, B., Parlant, G.: Reconcilling semiclassical and Bohmian mechanics. IV. Multisurface dynamics. J. Phys. Chem. A 111, 10400–10408 (2007)

    Article  Google Scholar 

  29. Poirier, B.: Reconcilling semiclassical and Bohmian mechanics. V. Wavepacket dynamics. J. Chem. Phys. 128, 164115(1–15) (2008)

    Article  ADS  Google Scholar 

  30. Poirier, B.: Reconcilling semiclassical and Bohmian mechanics. VI. Multidimensional dynamics. J. Chem. Phys. 129, 084103(1–18) (2008)

    Article  ADS  Google Scholar 

  31. Wyatt, R.E.: Quantum Dynamics with Trajectories. Springer, New York (2005)

    MATH  Google Scholar 

  32. Faraggi, A.E., Matone, M.: Duality of x and Ψ and a statistical interpretation of space in quantum mechanics. Phys. Rev. Lett. 78, 163–166 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Faraggi, A.E., Matone, M.: Quantum transformations. Phys. Lett. A 249, 180–190 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Faraggi, A.E., Matone, M.: The equivalence postulate in quantum mechanics. Int. J. Mod. Phys. 15, 1869–2017 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  35. Faraggi, A.E., Matone, M.: Energy quantisation and time parameterisation. arXiv:1211.0798 (2012)

  36. Bouda, A., Djama, T.: Quantum Newton’s law. Phys. Lett. A 285, 27–33 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Bouda, A., Djama, T.: Trajectories in the context of the quantum Newton’s law. Phys. Scr. 66, 97–104 (2002)

    Article  ADS  MATH  Google Scholar 

  38. Floyd, E.R.: Comments on Bouda and Djama’s “Quantum Newton’s law”. Phys. Lett. A 296, 307–311 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  39. Bouda, A., Djama, T.: Reply to “Comments on Bouda and Djama’s ‘Quantum Newton’s law’ ”. Phys. Lett. A 296, 312–316 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  40. Kaplan, A.E., Stifter, P., van Leeuwen, K.A.H., Lamb, W.E. Jr., Schleich, W.P.: Intermode traces—fundamental interference phenomenon in quantum and wave physics. Phys. Scr. T 76, 93–97 (1998)

    Article  ADS  Google Scholar 

  41. Kaplan, A.E., Marzoli, I., Lamb, W.E. Jr., Schleich, W.P.: Multimode interference: Highly regular pattern formation in quantum wave-packet evolution. Phys. Rev. A 61, 032101(1–6) (2000)

    Article  ADS  Google Scholar 

  42. Nest, M.: Quantum carpets and correlated dynamics of several fermions. Phys. Rev. A 73, 023613(1–6) (2006)

    Article  ADS  Google Scholar 

  43. Sanz, A.S.: A Bohmian approach to quantum fractals. J. Phys. A, Math. Gen. 38, 6037–6050 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44(10), 36–44 (1991)

    Article  Google Scholar 

  45. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  46. Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243 (1985)

    Article  ADS  Google Scholar 

  47. Berry, M.V.: Quantum fractals in boxes. J. Phys. A 29, 6617–6629 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Hall, M.J.W., Reineker, M.S., Schleich, W.P.: Unravelling quantum carpets: A travelling-wave approach. J. Phys. A 32, 8275–8291 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Wójcik, D., Bialynicki-Birula, I., Zyczkowski, K.: Time evolution of quantum fractals. Phys. Rev. Lett. 85, 5022–5025 (2000)

    Article  ADS  Google Scholar 

  50. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  51. Hall, M.J.W.: Incompleteness of trajectory-based interpretations of quantum mechanics. J. Phys. A 37, 9549–9556 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Sanz, A.S., Borondo, F., Miret-Artés, S.: Quantum trajectories in atom–surface scattering with single adsorbates: The role of quantum vortices. J. Chem. Phys. 120, 8794–8806 (2004)

    Article  ADS  Google Scholar 

  53. Sanz, A.S., Miret-Artés, S.: Quantum trajectories in elastic atom-surface scattering: Threshold and selective adsorption resonances. J. Chem. Phys. 122, 014702(1–12) (2005)

    Article  ADS  Google Scholar 

  54. Guantes, R., Sanz, A.S., Margalef-Roig, J., Miret-Artés, S.: Atom-surface diffraction: A trajectory description. Surf. Sci. Rep. 53, 199–330 (2004)

    Article  ADS  Google Scholar 

  55. Glauber, R.J.: Coherent and incoherent states of radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  56. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Schrödinger, E.: Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664–666 (1926)

    Article  ADS  MATH  Google Scholar 

  58. John, M.V.: Modified de Broglie-Bohm approach to quantum mechanics. Found. Phys. Lett. 15, 329–343 (2002)

    Article  MathSciNet  Google Scholar 

  59. Yang, C.-D.: Modeling quantum harmonic oscillator in complex domain. Chaos Solitons Fractals 30, 342–362 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Yang, C.-D.: Quantum motion in complex space. Chaos Solitons Fractals 33, 1073–1092 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Dey, S., Fring, A.: Bohmian quantum trajectories from coherent states. Phys. Rev. A 88, 022116(1–12) (2013)

    Article  ADS  Google Scholar 

  62. Villarreal, P., Delgado-Barrio, G., Miret-Artés, S.: Non linear classical dynamics: The van der Pol equation applied to quantal simulations. An. Fís. 90, 299–305 (1994)

    Google Scholar 

  63. Sanz, A.S., Martínez-Casado, R., Peñate-Rodríguez, H.C., Rojas-Lorenzo, G., Miret-Artés, S.: Dissipative Bohmian mechanics: A trajectory analysis of wave-packet dynamics in viscid media. arXiv:1306.6607v1 (2013)

  64. Heller, E.J.: Time-dependent approach to semiclassical dynamics. J. Chem. Phys. 62, 1544–1555 (1975)

    Article  ADS  Google Scholar 

  65. Vandyck, M.A.: On the damped harmonic oscillator in the de Broglie-Bohm hidden-variable theory. J. Phys. A 27, 1743–1750 (1994)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanz, Á.S., Miret-Artés, S. (2014). Bound System Dynamics. In: A Trajectory Description of Quantum Processes. II. Applications. Lecture Notes in Physics, vol 831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17974-7_4

Download citation

Publish with us

Policies and ethics