Skip to main content

Small Molecule Allosteric Modulators of Phosphodiesterase 4

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 204))

Abstract

Phosphodiesterase 4 (PDE4) inhibitors have shown benefit in human clinical trials but dosing is limited by tolerability, particularly because of emesis. Novel cocrystal structures of PDE4 catalytic units with their regulatory domains together with bound inhibitors have revealed three different PDE4 conformers that can be exploited in the design of novel therapeutic agents. The first is an open conformer, which has been employed in the traditional approach to the design of competitive PDE4 inhibitors. The second is an asymmetric dimer in which a UCR2 regulatory helix from one monomer is placed in a closed conformation over the opposite active site in the PDE4 dimer (trans-capping). Only one active site can be closed by an inhibitor at a time with the consequence that compounds exploiting this conformer only partially inhibit PDE4 enzymatic activity while retaining potency in cellular and in vivo models. By placing an intrinsic ceiling on the magnitude of PDE4 inhibition, such compounds may better maintain spatial and temporal patterning of signaling in cAMP microdomains with consequent improved tolerability. The third is a symmetric PDE4 conformer in which helices from the C-terminal portion of the catalytic unit cap both active sites (cis-capping). We propose that dual-gating of PDE4 activity may be further fine tuned by accessory proteins that recognize open or closed conformers of PDE4 regulatory helices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aoki M, Fukunaga M, Sugimoto T, Hirano Y, Kobayashi M, Honda K, Yamada T (2001) Studies on mechanisms of low emetogenicity of YM976, a novel phosphodiesterase type 4 inhibitor. J Pharmacol Exp Ther 298:1142–1149

    PubMed  CAS  Google Scholar 

  • Asirvatham AL, Galligan SG, Schillace RV, Davey MP, Vasta V, Beavo JA, Carr DW (2004) A-kinase anchoring proteins interact with phosphodiesterases in T lymphocyte cell lines. J Immunol 173:4806–4814

    PubMed  CAS  Google Scholar 

  • Bailey CH, Bartsch D, Kandel ER (1996) Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci U S A 93:13445–13452

    Article  PubMed  CAS  Google Scholar 

  • Baillie GS, Adams DR, Bhari N, Houslay TM, Vadrevu S, Meng D, Li X, Dunlop A, Milligan G, Bolger GB, Klussmann E, Houslay MD (2007) Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-immobilized peptide arrays. Biochem J 404:71–80

    Article  PubMed  CAS  Google Scholar 

  • Beard MB, Olsen AE, Jones RE, Erdogan S, Houslay MD, Bolger GB (2000) UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions. J Biol Chem 275:10349–10358

    Article  PubMed  CAS  Google Scholar 

  • Blackwood DH, Muir WJ (2004) Clinical phenotypes associated with DISC1, a candidate gene for schizophrenia. Neurotox Res 6:35–41

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, Schreiber R, Prickaerts J (2006) Improving memory: a role for phosphodiesterases. Curr Pharm Des 12:2511–2523

    Article  PubMed  CAS  Google Scholar 

  • Bobon D, Breulet M, Gerard-Vandenhove MA, Guiot-Goffioul F, Plomteux G, Sastre-y-Hernandez M, Schratzer M, Troisfontaines B, von Frenckell R, Wachtel H (1988) Is phosphodiesterase inhibition a new mechanism of antidepressant action? A double blind double-dummy study between rolipram and desipramine in hospitalized major and/or endogenous depressives. Eur Arch Psychiatry Neurol Sci 238:2–6

    Article  PubMed  CAS  Google Scholar 

  • Bolger G, Michaeli T, Martins T, St John T, Steiner B, Rodgers L, Riggs M, Wigler M, Ferguson K (1993) A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol 13:6558–6571

    PubMed  CAS  Google Scholar 

  • Bolger GB, McCahill A, Huston E, Cheung YF, McSorley T, Baillie GS, Houslay MD (2003a) The unique amino-terminal region of the PDE4D5 cAMP phosphodiesterase isoform confers preferential interaction with beta-arrestins. J Biol Chem 278:49230–49238

    Article  PubMed  CAS  Google Scholar 

  • Bolger GB, Peden AH, Steele MR, MacKenzie C, McEwan DG, Wallace DA, Huston E, Baillie GS, Houslay MD (2003b) Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J Biol Chem 278:33351–33363

    Article  PubMed  CAS  Google Scholar 

  • Bolger GB, Baillie GS, Li X, Lynch MJ, Herzyk P, Mohamed A, Mitchell LH, McCahill A, Hundsrucker C, Klussmann E, Adams DR, Houslay MD (2006) Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochem J 398:23–36

    Article  PubMed  CAS  Google Scholar 

  • Brideau C, Van Staden C, Styhler A, Rodger IW, Chan CC (1999) The effects of phosphodiesterase type 4 inhibitors on tumour necrosis factor-alpha and leukotriene B4 in a novel human whole blood assay. Br J Pharmacol 126:979–988

    Article  PubMed  CAS  Google Scholar 

  • Burgin AB, Magnusson OT, Singh J, Bjornsson JM, Thorsteinsdottir M, Hrafnsdottir S, Hagen T, Witte P, Staker BL, Kiselyov AS, Stewart LJ, Gurney ME (2010) Design of Phosphodiesterase Type 4D (PDE4D) allosteric modulators for cognition with improved safety. Nat Biotechnol 28:63–70

    Article  PubMed  CAS  Google Scholar 

  • Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2004) Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 12:2233–2247

    Article  PubMed  CAS  Google Scholar 

  • Carlisle Michel JJ, Dodge KL, Wong W, Mayer NC, Langeberg LK, Scott JD (2004) PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem J 381:587–592

    Article  PubMed  CAS  Google Scholar 

  • Castro LR, Gervasi N, Guiot E, Cavellini L, Nikolaev VO, Paupardin-Tritsch D, Vincent P (2010) Type 4 phosphodiesterase plays different integrating roles in different cellular domains in pyramidal cortical neurons. J Neurosci 30:6143–6151

    Article  PubMed  CAS  Google Scholar 

  • Chambers RJ, Abrams K, Castleberry TA, Cheng JB, Fisher DA, Kamath AV, Marfat A, Nettleton DO, Pillar JD, Salter ED, Sheils AL, Shirley JT, Turner CR, Umland JP, Lam KT (2006) A new chemical tool for exploring the role of the PDE4D isozyme in leukocyte function. Bioorg Med Chem Lett 16:718–721

    Article  PubMed  CAS  Google Scholar 

  • Charlie NK, Thomure AM, Schade MA, Miller KG (2006) The Dunce cAMP phosphodiesterase PDE-4 negatively regulates G alpha(s)-dependent and G alpha(s)-independent cAMP pools in the Caenorhabditis elegans synaptic signaling network. Genetics 173:111–130

    Article  PubMed  CAS  Google Scholar 

  • Chen CN, Denome S, Davis RL (1986) Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce + gene, the structural gene for cAMP phosphodiesterase. Proc Natl Acad Sci U S A 83:9313–9317

    Article  PubMed  CAS  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Iona S, Cuomo M, Swinnen JV, Odeh J, Svoboda ME (1995) Characterization of a hormone-inducible, high affinity adenosine 3′-5′-cyclic monophosphate phosphodiesterase from the rat Sertoli cell. Biochemistry 34:7979–7987

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375:517–529

    Article  PubMed  CAS  Google Scholar 

  • Davis RL, Takayasu H, Eberwine M, Myres J (1989) Cloning and characterization of mammalian homologs of the Drosophila dunce + gene. Proc Natl Acad Sci U S A 86:3604–3608

    Article  PubMed  CAS  Google Scholar 

  • Day JP, Dow JA, Houslay MD, Davies SA (2005) Cyclic nucleotide phosphodiesterases in Drosophila melanogaster. Biochem J 388:333–342

    Article  PubMed  CAS  Google Scholar 

  • DeMarch Z, GiampÁ C, Patassini S, Bernardi G, Fusco FR (2008) Beneficial effects of rolipram in the R6/2 mouse model of Huntington's disease. Neurobiol Dis. Jun;30(3):375–387 Epub 2008 Mar 7. PMID:18424161

    Google Scholar 

  • Fleischhacker WW, Hinterhuber H, Bauer H, Pflug B, Berner P, Simhandl C, Wolf R, Gerlach W, Jaklitsch H, Sastre-y-Hernandez M et al (1992) A multicenter double-blind study of three different doses of the new cAMP-phosphodiesterase inhibitor rolipram in patients with major depressive disorder. Neuropsychobiology 26:59–64

    Article  PubMed  CAS  Google Scholar 

  • Fujimaki K, Morinobu S, Duman RS (2000) Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 22:42–51

    Article  PubMed  CAS  Google Scholar 

  • Giembycz MA (2002) Development status of second generation PDE4 inhibitors for asthma and COPD: the story so far. Monaldi Arch Chest Dis 57:48–64

    PubMed  CAS  Google Scholar 

  • Giembycz MA (2005) Phosphodiesterase-4: selective and dual-specificity inhibitors for the therapy of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2:326–333, discussion 340–321

    Article  PubMed  CAS  Google Scholar 

  • Giembycz MA (2006) An update and appraisal of the cilomilast Phase III clinical development programme for chronic obstructive pulmonary disease. Br J Clin Pharmacol 62:138–152

    Article  PubMed  CAS  Google Scholar 

  • Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O (2004) Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114:1624–1634

    PubMed  CAS  Google Scholar 

  • Hatzelmann A, Schudt C (2001) Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. J Pharmacol Exp Ther 297:267–279

    PubMed  CAS  Google Scholar 

  • Heaslip RJ, Evans DY (1995) Emetic, central nervous system, and pulmonary activities of rolipram in the dog. Eur J Pharmacol 286:281–290

    Article  PubMed  CAS  Google Scholar 

  • Hebenstreit GF, Fellerer K, Fichte K, Fischer G, Geyer N, Meya U, Sastre-y-Hernandez M, Schony W, Schratzer M, Soukop W et al (1989) Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry 22:156–160

    Article  PubMed  CAS  Google Scholar 

  • Henkel-Tigges J, Davis RL (1990) Rat homologs of the Drosophila dunce gene code for cyclic AMP phosphodiesterases sensitive to rolipram and RO 20-1724. Mol Pharmacol 37:7–10

    PubMed  CAS  Google Scholar 

  • Hirose R, Manabe H, Nonaka H, Yanagawa K, Akuta K, Sato S, Ohshima E, Ichimura M (2007) Correlation between emetic effect of phosphodiesterase 4 inhibitors and their occupation of the high-affinity rolipram binding site in Suncus murinus brain. Eur J Pharmacol 573:93–99

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann R, Wilkinson IR, McCallum JF, Engels P, Houslay MD (1998) cAMP-specific phosphodiesterase HSPDE4D3 mutants which mimic activation and changes in rolipram inhibition triggered by protein kinase A phosphorylation of Ser-54: generation of a molecular model. Biochem J 333(Pt 1):139–149

    PubMed  CAS  Google Scholar 

  • Hoffmann R, Baillie GS, MacKenzie SJ, Yarwood SJ, Houslay MD (1999) The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J 18:893–903

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD (2001) PDE4 cAMP-specific phosphodiesterases. Prog Nucleic Acid Res Mol Biol 69:249–315

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 370:1–18

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Adams DR (2010) Putting the lid on phosphodiesterase 4. Nat Biotechnol 28:38–40

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Schafer P, Zhang KY (2005) Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 10:1503–1519

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Baillie GS, Maurice DH (2007) cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ Res 100:950–966

    Article  PubMed  CAS  Google Scholar 

  • Huston E, Pooley L, Julien P, Scotland G, McPhee I, Sullivan M, Bolger G, Houslay MD (1996) The human cyclic AMP-specific phosphodiesterase PDE-46 (HSPDE4A4B) expressed in transfected COS7 cells occurs as both particulate and cytosolic species that exhibit distinct kinetics of inhibition by the antidepressant rolipram. J Biol Chem 271:31334–31344

    Article  PubMed  CAS  Google Scholar 

  • Jacobitz S, McLaughlin MM, Livi GP, Burman M, Torphy TJ (1996) Mapping the functional domains of human recombinant phosphodiesterase 4A: structural requirements for catalytic activity and rolipram binding. Mol Pharmacol 50:891–899

    PubMed  CAS  Google Scholar 

  • Jin SL, Conti M (2002) Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci U S A 99:7628–7633

    Article  PubMed  CAS  Google Scholar 

  • Jin SL, Richard FJ, Kuo WP, D’Ercole AJ, Conti M (1999) Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc Natl Acad Sci U S A 96:11998–12003

    Article  PubMed  CAS  Google Scholar 

  • Ke H, Wang H (2007) Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr Top Med Chem 7:391–403

    Article  PubMed  CAS  Google Scholar 

  • Kovala T, Sanwal BD, Ball EH (1997) Recombinant expression of a type IV, cAMP-specific phosphodiesterase: characterization and structure-function studies of deletion mutants. Biochemistry 36:2968–2976

    Article  PubMed  CAS  Google Scholar 

  • Kranz M, Wall M, Evans B, Miah A, Ballantine S, Delves C, Dombroski B, Gross J, Schneck J, Villa JP, Neu M, Somers DO (2009) Identification of PDE4B Over 4D subtype-selective inhibitors revealing an unprecedented binding mode. Bioorg Med Chem 17:5336–5341

    Article  PubMed  CAS  Google Scholar 

  • Laux G, Becker T, Kuhne G, Lesch KP, Riederer P, Beckmann H (1988) Clinical and biochemical effects of the selective phosphodiesterase inhibitor rolipram in depressed inpatients controlled by determination of plasma level. Pharmacopsychiatry 21:378–379

    Article  PubMed  CAS  Google Scholar 

  • Lee ME, Markowitz J, Lee JO, Lee H (2002) Crystal structure of phosphodiesterase 4D and inhibitor complex(1). FEBS Lett 530:53–58

    Article  PubMed  CAS  Google Scholar 

  • Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123:25–35

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Huang Y, Amsdell SL, Xiao L, O’Donnell JM, Zhang HT (2009) Antidepressant- and anxiolytic-like effects of the phosphodiesterase-4 inhibitor rolipram on behavior depend on cyclic AMP response element binding protein-mediated neurogenesis in the hippocampus. Neuropsychopharmacology 34:2404–2419

    Article  PubMed  CAS  Google Scholar 

  • Lipworth BJ (2005) Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet 365:167–175

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Laliberte F, Bobechko B, Bartlett A, Lario P, Gorseth E, Van Hamme J, Gresser MJ, Huang Z (2001) Dissecting the cofactor-dependent and independent bindings of PDE4 inhibitors. Biochemistry 40:10179–10186

    Article  PubMed  CAS  Google Scholar 

  • Lorimer D, Raymond A, Walchli J, Mixon M, Wallace E, Barrow A, Grice R, Burgin A, Stewart L (2009) Gene composer: database software for protein construct design, codon engineering, and gene synthesis. BMC Biotechnol 9:36

    Article  PubMed  CAS  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  PubMed  CAS  Google Scholar 

  • Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, van Heeke G, Houslay MD (2005) RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 280:33178–33189

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie SJ, Baillie GS, McPhee I, Bolger GB, Houslay MD (2000) ERK2 mitogen-activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. The involvement of COOH-terminal docking sites and NH2-terminal UCR regions. J Biol Chem 275:16609–16617

    Article  PubMed  CAS  Google Scholar 

  • McPhee I, Yarwood SJ, Scotland G, Huston E, Beard MB, Ross AH, Houslay ES, Houslay MD (1999) Association with the SRC family tyrosyl kinase LYN triggers a conformational change in the catalytic region of human cAMP-specific phosphodiesterase HSPDE4A4B. Consequences for rolipram inhibition. J Biol Chem 274:11796–11810

    Article  PubMed  CAS  Google Scholar 

  • Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, Thomson PA, Hill EV, Brandon NJ, Rain JC, Camargo LM, Whiting PJ, Houslay MD, Blackwood DH, Muir WJ, Porteous DJ (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310:1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Monaco L, Vicini E, Conti M (1994) Structure of two rat genes coding for closely related rolipram-sensitive cAMP phosphodiesterases. Multiple mRNA variants originate from alternative splicing and multiple start sites. J Biol Chem 269:347–357

    PubMed  CAS  Google Scholar 

  • Murdoch H, Mackie S, Collins DM, Hill EV, Bolger GB, Klussmann E, Porteous DJ, Millar JK, Houslay MD (2007) Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J Neurosci 27:9513–9524

    Article  PubMed  CAS  Google Scholar 

  • Naganuma K, Omura A, Maekawara N, Saitoh M, Ohkawa N, Kubota T, Nagumo H, Kodama T, Takemura M, Ohtsuka Y, Nakamura J, Tsujita R, Kawasaki K, Yokoi H, Kawanishi M (2009) Discovery of selective PDE4B inhibitors. Bioorg Med Chem Lett 19:3174–3176

    Article  PubMed  CAS  Google Scholar 

  • Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS (2009) Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci U S A 106:18225–18230

    Article  PubMed  CAS  Google Scholar 

  • Perez-Torres S, Miro X, Palacios JM, Cortes R, Puigdomenech P, Mengod G (2000) Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3 H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat 20:349–374

    Article  PubMed  CAS  Google Scholar 

  • Raymond A, Lovell S, Lorimer D, Walchli J, Mixon M, Wallace E, Thompkins K, Archer K, Burgin A, Stewart L (2009) Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer. BMC Biotechnol 9:37

    Article  PubMed  CAS  Google Scholar 

  • Reid P (2002) Roflumilast Altana Pharma. Curr Opin Investig Drugs 3:1165–1170

    PubMed  CAS  Google Scholar 

  • Richter W, Conti M (2002) Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs). J Biol Chem 277:40212–40221

    Article  PubMed  CAS  Google Scholar 

  • Robichaud A, Tattersall FD, Choudhury I, Rodger IW (1999) Emesis induced by inhibitors of type IV cyclic nucleotide phosphodiesterase (PDE IV) in the ferret. Neuropharmacology 38:289–297

    Article  PubMed  CAS  Google Scholar 

  • Robichaud A, Savoie C, Stamatiou PB, Tattersall FD, Chan CC (2001) PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway. Neuropharmacology 40:262–269

    Article  PubMed  CAS  Google Scholar 

  • Robichaud A, Savoie C, Stamatiou PB, Lachance N, Jolicoeur P, Rasori R, Chan CC (2002a) Assessing the emetic potential of PDE4 inhibitors in rats. Br J Pharmacol 135:113–118

    Article  PubMed  CAS  Google Scholar 

  • Robichaud A, Stamatiou PB, Jin SL, Lachance N, MacDonald D, Laliberte F, Liu S, Huang Z, Conti M, Chan CC (2002b) Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest 110:1045–1052

    PubMed  CAS  Google Scholar 

  • Rocque WJ, Tian G, Wiseman JS, Holmes WD, Zajac-Thompson I, Willard DH, Patel IR, Wisely GB, Clay WC, Kadwell SH, Hoffman CR, Luther MA (1997) Human recombinant phosphodiesterase 4B2B binds (R)-rolipram at a single site with two affinities. Biochemistry 36:14250–14261

    Article  PubMed  CAS  Google Scholar 

  • Saldou N, Obernolte R, Huber A, Baecker PA, Wilhelm R, Alvarez R, Li B, Xia L, Callan O, Su C, Jarnagin K, Shelton ER (1998) Comparison of recombinant human PDE4 isoforms: interaction with substrate and inhibitors. Cell Signal 10:427–440

    Article  PubMed  CAS  Google Scholar 

  • Scott AI, Perini AF, Shering PA, Whalley LJ (1991) In-patient major depression: is rolipram as effective as amitriptyline? Eur J Clin Pharmacol 40:127–129

    Article  PubMed  CAS  Google Scholar 

  • Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271:16526–16534

    Article  PubMed  CAS  Google Scholar 

  • Smith DL, Pozueta J, Gong B, Arancio O, Shelanski M (2009) Reversal of long-term dendritic spine alterations in Alzheimer disease models. Proc Natl Acad Sci U S A 106:16877–16882

    Article  PubMed  CAS  Google Scholar 

  • Souness JE, Rao S (1997) Proposal for pharmacologically distinct conformers of PDE4 cyclic AMP phosphodiesterases. Cell Signal 9:227–236

    Article  PubMed  CAS  Google Scholar 

  • Spina D (2008) PDE4 inhibitors: current status. Br J Pharmacol 155:308–315

    Article  PubMed  CAS  Google Scholar 

  • Stefan E, Wiesner B, Baillie GS, Mollajew R, Henn V, Lorenz D, Furkert J, Santamaria K, Nedvetsky P, Hundsrucker C, Beyermann M, Krause E, Pohl P, Gall I, MacIntyre AN, Bachmann S, Houslay MD, Rosenthal W, Klussmann E (2007) Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J Am Soc Nephrol 18:199–212

    Article  PubMed  CAS  Google Scholar 

  • Swinnen JV, Joseph DR, Conti M (1989) Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: evidence for a family of genes. Proc Natl Acad Sci U S A 86:5325–5329

    Article  PubMed  CAS  Google Scholar 

  • Terrenoire C, Houslay MD, Baillie GS, Kass RS (2009) The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem 284:9140–9146

    Article  PubMed  CAS  Google Scholar 

  • Terrin A, Di Benedetto G, Pertegato V, Cheung YF, Baillie G, Lynch MJ, Elvassore N, Prinz A, Herberg FW, Houslay MD, Zaccolo M (2006) PGE(1) stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol 175:441–451

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Bourtchouladze R, Scott R, Tallman J (2003) Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2:267–277

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Matsuki N, Saito H (1987) Suncus murinus: a new experimental model in emesis research. Life Sci 41:513–518

    Article  PubMed  CAS  Google Scholar 

  • Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, Huang T, Brown KM, Li XY, Descalzi G, Kim SS, Chen T, Shang YZ, Zhuo M, Houslay MD, Abel T (2009) Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461:1122–1125

    Article  PubMed  CAS  Google Scholar 

  • Verde I, Pahlke G, Salanova M, Zhang G, Wang S, Coletti D, Onuffer J, Jin SL, Conti M (2001) Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem 276:11189–11198

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H (1983) Potential antidepressant activity of rolipram and other selective cyclic adenosine 3′, 5′-monophosphate phosphodiesterase inhibitors. Neuropharmacology 22:267–272

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Peng MS, Chen Y, Geng J, Robinson H, Houslay MD, Cai J, Ke H (2007a) Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. Biochem J 408:193–201

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Robinson H, Ke H (2007b) The molecular basis for different recognition of substrates by phosphodiesterase families 4 and 10. J Mol Biol 371:302–307

    Article  PubMed  CAS  Google Scholar 

  • Warrier S, Ramamurthy G, Eckert RL, Nikolaev VO, Lohse MJ, Harvey RD (2007) cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes. J Physiol 580:765–776

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm RS, Axt S (1995) 8-phenylcyclopentenoquinoline and 8-phenylcyclohexeneoquinoline derivatives. Syntex, Palo Alto, CA

    Google Scholar 

  • Willoughby D, Wong W, Schaack J, Scott JD, Cooper DM (2006) An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO J 25:2051–2061

    Article  PubMed  CAS  Google Scholar 

  • Xu RX, Hassell AM, Vanderwall D, Lambert MH, Holmes WD, Luther MA, Rocque WJ, Milburn MV, Zhao Y, Ke H, Nolte RT (2000) Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science 288:1822–1825

    Article  PubMed  CAS  Google Scholar 

  • Yarwood SJ, Steele MR, Scotland G, Houslay MD, Bolger GB (1999) The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. J Biol Chem 274:14909–14917

    Article  PubMed  CAS  Google Scholar 

  • Zeller E, Stief HJ, Pflug B, Sastre-y-Hernandez M (1984) Results of a phase II study of the antidepressant effect of rolipram. Pharmacopsychiatry 17:188–190

    Article  PubMed  CAS  Google Scholar 

  • Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G (2004) A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell 15:279–286

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Zhao Y, Huang Y, Deng C, Hopper AT, De Vivo M, Rose GM, O’Donnell JM (2006) Antidepressant-like effects of PDE4 inhibitors mediated by the high-affinity rolipram binding state (HARBS) of the phosphodiesterase-4 enzyme (PDE4) in rats. Psychopharmacology (Berl) 186:209–217

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang HT, O’Donnell JM (2003) Inhibitor binding to type 4 phosphodiesterase (PDE4) assessed using [3 H]piclamilast and [3 H]rolipram. J Pharmacol Exp Ther 305:565–572

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Gurney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurney, M.E., Burgin, A.B., Magnusson, O.T., Stewart, L.J. (2011). Small Molecule Allosteric Modulators of Phosphodiesterase 4. In: Francis, S., Conti, M., Houslay, M. (eds) Phosphodiesterases as Drug Targets. Handbook of Experimental Pharmacology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17969-3_7

Download citation

Publish with us

Policies and ethics