Skip to main content

The GAF-Tandem Domain of Phosphodiesterase 5 as a Potential Drug Target

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 204))

Abstract

Classic PDE5 inhibitors interact with and block the catalytic site of PDE5. They have been clinically validated for treatment of erectile dysfunction as well as reduction of pulmonary arterial pressure, improvement of exercise capacity, quality of life, and arterial oxygenation in patients with secondary pulmonary hypertension. Minor side effects are visual disturbances, headache, migraine, back pain, and interaction with nitrates (hypotension). Some of those side effects presumably can be ameliorated by improving selectivity and pharmacokinetics; other side effects probably are target related due to inhibition of basic physiological processes. Target related side effects may be bypassed by using PDE5 inhibitors with a different mode of action: PDE5, like PDE2, PDE6, PDE10, and PDE11, is a multidomain protein with an N-terminal tandem GAF domain, which in case of PDE5, is allosterically activated by cGMP. Potential inhibitors acting at the PDE5 GAF domain would be expected to inhibit only pathophysiologically upregulated PDE5 activity, whereas basal activity of PDE5 would remain unaffected.

Here, we summarize a high-throughput screening campaign to identify inhibitors of the regulatory GAF domain of human PDE5. To target the regulatory domain independently from the catalytic site, we used a chimeric reporter enzyme: The hPDE5 GAF-tandem domain functionally replaced the GAF domain in the cyanobacterial adenylyl cyclase CyaB1. We identified inhibitors that target the GAF domain and also inhibitors that target the bacterial cyclase.

Compounds binding to the PDE5 GAF domain were reanalysed with native human PDE5 to demonstrate inhibition using capillary electrophoresis. This identified 16 compounds that act on the GAF domain of PDE5. Two compounds fulfilled the initial requirement to inhibit, exclusively, activated PDE5, but not basal PDE5 activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

cAMP:

3′,5′-cyclic adenosine monophosphate

cGMP:

3′,5′-cyclic guanosine monophosphate

hPDE:

Human phosphodiesterase

PDE:

Phosphodiesterase

SD:

Standard deviation

References

  • Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22:458–459

    Article  PubMed  CAS  Google Scholar 

  • Aversa A, Bruzziches R, Pili M, Spera G (2006) Phosphodiesterase 5 inhibitors in the treatment of erectile dysfunction. Curr Pharm Des 12:3467–3484

    Article  PubMed  CAS  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research – still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718

    Article  PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Bergstrand H, Kristoffersson J, Lundquist B, Schurmann A (1977) Effects of antiallergic agents, compound 48/80, and some reference inhibitors on the activity of partially purified human lung tissue adenosine cyclic 3′, 5′-monophosphate and guanosine cyclic 3′, 5′-monophosphate phosphodiesterases. Mol Pharmacol 13:38–43

    PubMed  CAS  Google Scholar 

  • Bruder S, Schultz A, Schultz JE (2006) Characterization of the tandem GAF domain of human phosphodiesterase 5 using a cyanobacterial adenylyl cyclase as a reporter enzyme. J Biol Chem 281:19969–19976

    Article  PubMed  CAS  Google Scholar 

  • Chasin M, Harris DN (1976) Inhibitory and activators of cyclic nucleotide phosphodiesterase. Adv Cyclic Nucleotide Res 7:225–264

    PubMed  CAS  Google Scholar 

  • Cogan EB, Birrell GB, Griffith OH (1999) A robotics-based automated assay for inorganic and organic phosphates. Anal Biochem 271:29–35

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  • Corbin JD, Blount MA, Weeks JL 2nd, Beasley A, Kuhn KP, Ho YS, Saidi LF, Hurley JH, Kotera J, Francis SH (2003) [3H]sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous, and stimulated by cGMP. Mol Pharmacol 63:1364–1372

    Article  PubMed  CAS  Google Scholar 

  • Corbin JD, Turko IV, Beasley A, Francis SH (2000) Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem 267:2760–2767

    Article  PubMed  CAS  Google Scholar 

  • Croom KF, Curran MP (2008) Sildenafil: a review of its use in pulmonary arterial hypertension. Drugs 68:383–397

    Article  PubMed  CAS  Google Scholar 

  • Francis SH, Turko IV, Corbin JD (2001) Cyclic nucleotide phosphodiesterases: relating structure and function. Prog Nucleic Acid Res Mol Biol 65:1–52

    Article  PubMed  CAS  Google Scholar 

  • Gross-Langenhoff M, Hofbauer K, Weber J, Schultz A, Schultz JE (2006) cAMP is a ligand for the tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain of phosphodiesterase 11. J Biol Chem 281:2841–2846

    Article  PubMed  CAS  Google Scholar 

  • Handa N, Mizohata E, Kishishita S, Toyama M, Morita S, Uchikubo-Kamo T, Akasaka R, Omori K, Kotera J, Terada T (2008) Crystal structure of the GAF-B domain from human phosphodiesterase 10A complexed with its ligand, cAMP. J Biol Chem 283:19657–19664

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer K, Schultz A, Schultz JE (2008) Functional chimeras of the phosphodiesterase 5 and 10 tandem GAF domains. J Biol Chem 283:25164–25170

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD (2010) Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci 35:91–100

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 370:1–18

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Schafer P, Zhang KY (2005) Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 10:1503–1519

    Article  PubMed  CAS  Google Scholar 

  • Kanacher T, Schultz A, Linder JU, Schultz JE (2002) A GAF-domain-regulated adenylyl cyclase from Anabaena is a self-activating cAMP switch. EMBO J 21:3672–3680

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Underwood T, Li H, Pamukcu R, Thompson WJ (2002) Specific cGMP binding by the cGMP binding domains of cGMP-binding cGMP specific phosphodiesterase. Cell Signal 14:45–51

    Article  PubMed  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  PubMed  CAS  Google Scholar 

  • Manallack DT, Hughes RA, Thompson PE (2005) The next generation of phosphodiesterase inhibitors: structural clues to ligand and substrate selectivity of phosphodiesterases. J Med Chem 48:3449–3462

    Article  PubMed  CAS  Google Scholar 

  • Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5:660–670

    Article  PubMed  CAS  Google Scholar 

  • Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

    Article  PubMed  CAS  Google Scholar 

  • Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS (2009) Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci USA 106:18225–18230

    Article  PubMed  CAS  Google Scholar 

  • Rose GM, Hopper A, De Vivo M, Tehim A (2005) Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des 11:3329–3334

    Article  PubMed  CAS  Google Scholar 

  • Rotella DP (2002) Phosphodiesterase 5 inhibitors: current status and potential applications. Nat Rev Drug Discov 1:674–682

    Article  PubMed  CAS  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA (2003a) PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 22:469–478

    Article  PubMed  CAS  Google Scholar 

  • Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA (2003b) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 93:280–291

    Article  PubMed  CAS  Google Scholar 

  • Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. J Biol Chem 271:16526–16534

    Article  PubMed  CAS  Google Scholar 

  • Stroop SD, Beavo JA (1991) Structure and function studies of the cGMP-stimulated phosphodiesterase. J Biol Chem 266:23802–23809

    PubMed  CAS  Google Scholar 

  • Vasta V, Beavo J (2004) Functions and pharmacological inhibitors of cyclic nucleotide phosphodiesterases. Cell Transm 20:3–8

    Google Scholar 

  • Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H (2007) Structural insight into substrate specificity of phosphodiesterase 10. Proc Natl Acad Sci USA 104:5782–5787

    Article  PubMed  CAS  Google Scholar 

  • Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

  • Zhang KY, Ibrahim PN, Gillette S, Bollag G (2005) Phosphodiesterase-4 as a potential drug target. Expert Opin Ther Targets 9:1283–1305

    Article  PubMed  CAS  Google Scholar 

  • Zoraghi R, Bessay EP, Corbin JD, Francis SH (2005) Structural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerization, and regulation. J Biol Chem 280:12051–12063

    Article  PubMed  CAS  Google Scholar 

  • Zoraghi R, Corbin JD, Francis SH (2004) Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 65:267–278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Joachim Schultz is supported by the Deutsche Forschungsgemeinschaft, Klaus Mann optimized the performance of the Robocon robotic system and Necdet Aslan prepared compound dilutions for screening by using an automated system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim E. Schultz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schultz, J.E., Dunkern, T., Gawlitta-Gorka, E., Sorg, G. (2011). The GAF-Tandem Domain of Phosphodiesterase 5 as a Potential Drug Target. In: Francis, S., Conti, M., Houslay, M. (eds) Phosphodiesterases as Drug Targets. Handbook of Experimental Pharmacology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17969-3_6

Download citation

Publish with us

Policies and ethics