Nanocoatings pp 149-184 | Cite as

Size Effect in Mechanical Properties of Nanostructured Coatings

  • Mahmood AliofkhazraeiEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Research studies have shown that when particles’ size reaches to the dimensions of nanometer, remarkable improvement will be observed in strength of composite. For example, remarkable increase was observed in hardness of nickel-alumina composite when size of improving particles was decreased from 10 μm to 10 nm. Shape, size and surface of nanoparticles play important role in properties of nanocomposite. In recent years, nanocomposites have been used widely due to their better magnetic, mechanical, optical and physical properties.


Composite Coating Alumina Particle Nanocomposite Coating Alumina Nanoparticles Nanometric Particulate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baji, A., Mai, Y.W., Wong, S.C., Abtahi, M., Chen, P.: Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 70, 703–718 (2010)CrossRefGoogle Scholar
  2. 2.
    Beitollahi, A., Hosseini-Bay, H., Sarpoolaki, H.: Synthesis and characterization of Al2O3-ZrO2 nanocomposite powder by sucrose process. J. Mater. Sci. Mater. Electron. 21, 130–136 (2010)CrossRefGoogle Scholar
  3. 3.
    Bouvy, C., Chelnokov, E., Marine, W., Sporken, R., Su, B.L.: Quantum size effect and very localized random laser in ZnO@mesoporous silica nanocomposite following a two-photon absorption process. J. Non Cryst. Solids 355, 1152–1156 (2009)CrossRefGoogle Scholar
  4. 4.
    Hasheminejad, S.M., Avazmohammadi, R.: Size-dependent effective dynamic properties of unidirectional nanocomposites with interface energy effects. Compos. Sci. Technol. 69, 2538–2546 (2009)CrossRefGoogle Scholar
  5. 5.
    He, J.H., Yuan, S.L., Yin, S.Y., Liu, K.L., Li, P., Wang, C.H., Liu, L., Li, J.Q., Tian, Z.M.: Analysis of exchange bias effect of NiO+NiFe2O4 composites. J. Magn. Magn. Mater. 322, 79–83 (2010)CrossRefGoogle Scholar
  6. 6.
    Ifuku, S., Morooka, S., Morimoto, M., Saimoto, H.: Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules 11, 1326–1330 (2010)CrossRefGoogle Scholar
  7. 7.
    Jeon, B.S., Cho, E.J., Yang, H.M., Sun, J.S., Huh, Y.M., Kim, J.D.: Controlled aggregates of magnetite nanoparticles for highly sensitive MR contrast agent. J. Nanosci. Nanotechnol. 9, 7118–7122 (2009)Google Scholar
  8. 8.
    Koroleva, E. Y., Nuzhnyy, D., Pokorny, J., Kamba, S., Kumzerov, Y. A., Vakhrushev, S. B., Petzelt, J.: The negative phonon confinement effect in nanoscopic sodium nitrite. Nanotechnology 20, (2009)Google Scholar
  9. 9.
    Liu, P.C., Hsieh, J.H., Li, C., Chang, Y.K., Yang, C.C.: Dissolution of Cu nanoparticles and antibacterial behaviors of TaN-Cu nanocomposite thin films. Thin Solid Films 517, 4956–4960 (2009)CrossRefGoogle Scholar
  10. 10.
    Nadeem, K., Traussnig, T., Letofsky-Papst, I., Krenn, H., Brossmann, U., Würschum, R.: Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO2 matrix. J. Alloys Compd. 493, 385–390 (2010)CrossRefGoogle Scholar
  11. 11.
    Yang, F.: Size effect on the effective bulk modulus of nanocomposites with core-shell nanospherical inclusions. Mater. Sci. Eng. A 527, 3913–3917 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhang, W.X., Wang, T.J., Chen, X.: Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. Int. J. Plast. 26, 957–975 (2010)CrossRefGoogle Scholar
  13. 13.
    Ohno, T., Tagawa, S., Itoh, H., Suzuki, H., Matsuda, T.: Size effect of TiO2-SiO2 nano-hybrid particle. Mater. Chem. Phys. 113, 119–123 (2009)CrossRefGoogle Scholar
  14. 14.
    Beyene, H.T., Chakravadhanula, V.S.K., Hanisch, C., Elbahri, M., Strunskus, T., Zaporojtchenko, V., Kienle, L., Faupel, F.: Preparation and plasmonic properties of polymer-based composites containing Ag-Au alloy nanoparticles produced by vapor phase co-deposition. J. Mater. Sci. 45, 5865–5871 (2010)CrossRefGoogle Scholar
  15. 15.
    Chen, Z., Cao, Y., Qian, J., Ai, X., Yang, H.: Facile synthesis and stable lithium storage performances of Sn-sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. J. Mater. Chem. 20, 7266–7271 (2010)CrossRefGoogle Scholar
  16. 16.
    El-Sheikhy, R.A., Al-Shamrani, M.A.: General analytical concept and design methodology to producing a clay-based polymer nanocomposite. Ceramic Transactions 165–174 (2010)Google Scholar
  17. 17.
    Jee, A.Y., Lee, M.: Surface functionalization and physicochemical characterization of diamond nanoparticles. Curr. Appl. Phys. 9, e144–e147 (2009)CrossRefGoogle Scholar
  18. 18.
    Jaworek, A.: Electrostatic micro- and nanoencapsulation and electroemulsification: A brief review. J. Microencapsul. 25, 443–468 (2008)CrossRefGoogle Scholar
  19. 19.
    Bo, Y., Lei, S., Nangeng, W., Xiaohan, L., Limin, W., Jian, Z.: A facile method for fabrication of ordered porous polymer films. Macromolecules 41, 6624–6626 (2008)CrossRefGoogle Scholar
  20. 20.
    Vertlib, V., Dietiker, M., Plötze, M., Yezek, L., Spolenak, R., Puzrin, A.M.: Fast assembly of bio-inspired nanocomposite films. J. Mater. Res. 23, 1026–1035 (2008)CrossRefGoogle Scholar
  21. 21.
    Perkas, N., Amirian, G., Dubinsky, S., Gazit, S., Gedanken, A.: Ultrasound-assisted coating of nylon 6,6 with silver nanoparticles and its antibacterial activity. J. Appl. Polym. Sci. 104, 1423–1430 (2007)CrossRefGoogle Scholar
  22. 22.
    Shim, B.S., Starkovich, J., Kotov, N.: Multilayer composites from vapor-grown carbon nano-fibers. Compos. Sci. Technol. 66, 1171–1178 (2006)CrossRefGoogle Scholar
  23. 23.
    Arkhireeva, A., Hay, J.N.: Ormosil nanocomposite materials as modifiers for acrylic coating systems. J. Nanosci. Nanotechnol. 6, 360–371 (2006)Google Scholar
  24. 24.
    Nolte, A.J., Rubner, M.F., Cohen, R.E.: Creating effective refractive index gradients within polyelectrolyte multilayer films: molecularly assembled rugate filters. Langmuir 20, 3304–3310 (2004)CrossRefGoogle Scholar
  25. 25.
    Musil, J., Vlček, J., Regent, F., Kunc, F., Zeman, H.: Hard nanocomposite coatings prepared by magnetron sputtering. In: Key Engineering Materials, pp. 613–622. (2002)Google Scholar
  26. 26.
    Matthews, A.: Developments in PVD tribological coatings (IUVSTA highlights seminar-vacuum metallurgy division). Vacuum 65, 237–238 (2002)CrossRefGoogle Scholar
  27. 27.
    Glasgow, C., Chew, J., Sherman, A.: Microcomposite coating can replace chrome plating. Adv. Mater. Process. 168, 22–24 (2010)Google Scholar
  28. 28.
    Frade, T., Bouzon, V., Gomes, A., da Silva Pereira, M.I.: Pulsed-reverse current electrodeposition of Zn and Zn–TiO2 nanocomposite films. Surf. Coat. Technol. 204, 3592–3598 (2010)CrossRefGoogle Scholar
  29. 29.
    Vlasa, A., Varvara, S., Pop, A., Bulea, C., Muresan, L.M.: Electrodeposited Zn–TiO2 nanocomposite coatings and their corrosion behavior. J. Appl. Electrochem. 40, 1519–1527 (2010)CrossRefGoogle Scholar
  30. 30.
    Konwar, U., Karak, N., Mandal, M.: Vegetable oil based highly branched polyester/clay silver nanocomposites as antimicrobial surface coating materials. Prog. Org. Coat. 68, 265–273 (2010)CrossRefGoogle Scholar
  31. 31.
    Wang, L., Wan, S., Wang, S.C., Wood, R.J.K., Xue, Q.J.: Gradient DLC-based nanocomposite coatings as a solution to improve tribological performance of aluminum alloy. Tribol. Lett. 38, 155–160 (2010)CrossRefGoogle Scholar
  32. 32.
    Marita, Y., Yaacob, I.I.: Synthesis and characterization of nickel-iron-silicon nitride nanocomposite. In: Advanced Materials Research, pp. 1360–1363. (2010)Google Scholar
  33. 33.
    Taniguchi, T., Shimoyama, N.: Preparation of tintable polysiloxane hard coating material. Kobunshi Ronbunshu 67, 76–81 (2010)CrossRefGoogle Scholar
  34. 34.
    Kizilkaya, C., Karatas, S., Apohan, N.K., Güngör, A.: Synthesis and characterization of novel polyimide/SiO2 nanocomposite materials containing phenylphosphine oxide via sol-gel technique. J. Appl. Polym. Sci. 115, 3256–3264 (2010)CrossRefGoogle Scholar
  35. 35.
    Zhang, G., Li, B., Jiang, B., Chen, D., Yan, F.: Microstructure and mechanical properties of multilayer Ti(C, N) films by closed-field unbalanced magnetron sputtering ion plating. J. Mater. Sci. Technol. 26, 119–124 (2010)CrossRefGoogle Scholar
  36. 36.
    Huang, S.H., Hsieh, T.E., Chen, J.W.: BGA cutter improvement utilizing nano-TiAlN coating layers synthesized by cathodic arc ion plating process. Surf. Coat. Technol. 204, 988–991 (2009)CrossRefGoogle Scholar
  37. 37.
    Fukumoto, N., Ezura, H., Suzuki, T.: Synthesis and oxidation resistance of TiAlSiN and multilayer TiAlSiN/CrAlN coating. Surf. Coat. Technol. 204, 902–906 (2009)CrossRefGoogle Scholar
  38. 38.
    Thiemig, D., Bund, A., Talbot, J.B.: Influence of hydrodynamics and pulse plating parameters on the electrocodeposition of nickel-alumina nanocomposite films. Electrochim. Acta 54, 2491–2498 (2009)CrossRefGoogle Scholar
  39. 39.
    Peipmann, R., Thomas, J., Bund, A.: Electrocodeposition of nickel-alumina nanocomposite films under the influence of static magnetic fields. Electrochim. Acta 52, 5808–5814 (2007)CrossRefGoogle Scholar
  40. 40.
    Viswanathan, V., Agarwal, A., Ocelik, V., De Hosson, J.T.M., Sobczak, N., Seal, S.: High energy density processing of a free form nickel-alumina nanocomposite. J. Nanosci. Nanotechnol. 6, 651–660 (2006)Google Scholar
  41. 41.
    Aruna, S.T., Diwakar, S., Jain, A., Rajam, K.S.: Comparative study on the effect of current density on Ni and Ni-Ni-Al2O3 nanocomposite coatings produced by electrolytic deposition. Surf. Eng. 21, 209–214 (2005)CrossRefGoogle Scholar
  42. 42.
    He, L.H., Lim, C.W., Wu, B.S.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Int. J. Solids Struct. 41, 847–857 (2004)CrossRefGoogle Scholar
  43. 43.
    Abu Al-Rub, R.K.: Interfacial gradient plasticity governs scale-dependent yield strength and strain hardening rates in micro/nano structured metals. Int. J. Plast. 24, 1277–1306 (2008)CrossRefGoogle Scholar
  44. 44.
    Balaraju, J.N., Kalavati, Rajam, K.S: Electroless ternary Ni-W-P alloys containing micron size Al2O3 particles. Surf. Coat. Technol. 205, 575–581 (2010)CrossRefGoogle Scholar
  45. 45.
    Badarulzaman, N.A., Purwadaria, S., Mohamad, A.A., Ahmad, Z.A.: The production of nickel-alumina composite coating via electroplating. Ionics 15, 603–607 (2009)CrossRefGoogle Scholar
  46. 46.
    Spanou, S., Pavlatou, E.A., Spyrellis, N.: Ni/nano-TiO2 composite electrodeposits: textural and structural modifications. Electrochim. Acta 54, 2547–2555 (2009)CrossRefGoogle Scholar
  47. 47.
    Thiemig, D., Bund, A.: Influence of ethanol on the electrocodeposition of Ni/Al2O3 nanocomposite films. Appl. Surf. Sci. 255, 4164–4170 (2009)CrossRefGoogle Scholar
  48. 48.
    de Hazan, Y., Werner, D., Z’Graggen, M., Groteklaes, M., Graule, T.: Homogeneous Ni-P/Al2O3 nanocomposite coatings from stable dispersions in electroless nickel baths. J. Colloid Interface Sci. 328, 103–109 (2008)CrossRefGoogle Scholar
  49. 49.
    Wang, C., Zhong, Y., Ren, W., Lei, Z., Ren, Z., Jia, J., Jiang, A.: Effects of parallel magnetic field on electrocodeposition behavior of Ni/nanoparticle composite electroplating. Appl. Surf. Sci. 254, 5649–5654 (2008)CrossRefGoogle Scholar
  50. 50.
    Ciubotariu, A., Benea, L., Lakatos-Varsanyi, M., Dragan, V.: Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3-Ni nano composite coatings. Electrochim. Acta 53, 4557–4563 (2008)CrossRefGoogle Scholar
  51. 51.
    Thiemig, D., Lange, R., Bund, A.: Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites. Electrochim. Acta 52, 7362–7371 (2007)CrossRefGoogle Scholar
  52. 52.
    Bund, A., Thiemig, D.: Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel. Surf. Coat. Technol. 201, 7092–7099 (2007)CrossRefGoogle Scholar
  53. 53.
    Zhou, Y., Peng, X., Wang, F.: Size effect of Al particles on the oxidation of electrodeposited Ni-Al composite coatings. Oxid. Met. 64, 169–183 (2005)CrossRefGoogle Scholar
  54. 54.
    Amutha, K., Marikkannu, K.R., Vasudevan, T.: Electrodeposition of nickel-(activated) alumina composites on mild steel. Bull. Electrochem. 21, 379–383 (2005)Google Scholar
  55. 55.
    Tu, W.Y., Xu, B.S., Dong, S.Y., Jiang, B., Du, L.Z.: Effect of n-Al2O3 on electrochemical nucleation and chemical binding interaction in nickel electrodeposition. Trans. Nonferr. Met. Soc. China (English Edition) 15, 889–896 (2005)Google Scholar
  56. 56.
    Szczygiel, B., Kolodziej, M.: Composite Ni/Al2O3 coatings and their corrosion resistance. Electrochim. Acta 50, 4188–4195 (2005)CrossRefGoogle Scholar
  57. 57.
    Alirezaei, S., Monirvaghefi, S.M., Salehi, M., Saatchi, A., Kargosha, M.: Effect of alumina content on wear behaviour of Ni-P-Al2O3(α) electroless composite coatings. Surf. Eng. 21, 60–66 (2005)CrossRefGoogle Scholar
  58. 58.
    Kole, M., Dey, T.K.: Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp. Therm. Fluid Sci. 34, 677–683 (2010)CrossRefGoogle Scholar
  59. 59.
    Zhang, Z., Pinnavaia, T.J.: Mesoporous gamma-alumina formed through the surfactant-mediated scaffolding of peptized pseudoboehmite nanoparticles. Langmuir: ACS J. Surf. Colloids 26, 10063–10067 (2010)Google Scholar
  60. 60.
    Hosseini, S.M., Moghadassi, A.R., Henneke, D.E.: Henneke, A new dimensionless group model for determining the viscosity of nanofluids. J. Therm. Anal. Calorim. 100, 873–877 (2010)CrossRefGoogle Scholar
  61. 61.
    An, B., Wang, W., Ji, G., Gan, S., Gao, G., Xu, J., Li, G.: Preparation of nano-sized α--Al2O3 from oil shale ash. Energy 35, 45–49 (2010)CrossRefGoogle Scholar
  62. 62.
    Ratkovich, A., Penn, R.L.: Zinc oxide nanoparticle growth from homogenous solution: influence of Zn:OH, water concentration, and surfactant additives. Mater. Res. Bull. 44, 993–998 (2009)CrossRefGoogle Scholar
  63. 63.
    Sun, L., Zhang, C., Chen, L., Liu, J., Jin, H., Xu, H., Ding, L.: Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction. Anal. Chim. Acta 638, 162–168 (2009)CrossRefGoogle Scholar
  64. 64.
    Li, X., Zhu, D., Wang, X., Wang, N., Gao, J.: Thermal conductivity enhancement for aqueous alumina nano-suspensions in the presence of surfactant. J. Enhanc. Heat Transf. 16, 93–102 (2009)CrossRefGoogle Scholar
  65. 65.
    Ko, H., Chang, S., Tsukruk, V.V.: Porous substrates for label-free molecular level detection of nonresonant organic molecules. ACS Nano 3, 181–188 (2009)CrossRefGoogle Scholar
  66. 66.
    Burton, P.D., Lavenson, D., Johnson, M., Gorm, D., Karim, A.M., Conant, T., Datye, A.K., Hernandez-Sanchez, B.A., Boyle, T.J.: Synthesis and activity of heterogeneous Pd/Al2O3 and Pd/ZnO catalysts prepared from colloidal palladium nanoparticles. Top. Catal. 49, 227–232 (2008)CrossRefGoogle Scholar
  67. 67.
    Kannan, P., Young, R.J., Eichhorn, S.J.: Debundling, isolation, and identification of carbon nanotubes in electrospun nanofibers. Small 4, 930–933 (2008)CrossRefGoogle Scholar
  68. 68.
    Zhang, J., Shi, F., Lin, J., Wei, S.Y., Chen, D., Gao, J.M., Huang, Z., Ding, X.X., Tang, C.: Nanoparticles assembly of boehmite nanofibers without a surfactant. Mater. Res. Bull. 43, 1709–1715 (2008)CrossRefGoogle Scholar
  69. 69.
    Park, S., Seo, D., Lee, J.: Preparation of Pb-free silver paste containing nanoparticles. Colloids Surf. A Physicochem. Eng. Aspects 313–314, 197–201 (2008)CrossRefGoogle Scholar
  70. 70.
    Yong, K.P.: Preparation and characterization of alumina nanoparticles from alkoxides and Na(AOT) surfactant. In: Materials Science Forum, pp. 785–788. (2007)Google Scholar
  71. 71.
    Shen, S.C., Ng, W.K., Chen, Q., Zeng, X.T., Chew, M.Z., Tan, R.B.H.: Solid-phase low temperature steam-assisted synthesis of thermal stable alumina nanowires. J. Nanosci. Nanotechnol. 7, 2726–2733 (2007)CrossRefGoogle Scholar
  72. 72.
    Stoyanova, A., Tsakova, V.: Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid: II. Role of the characteristics of the metal deposit. J. Solid State Electrochem. 14, 1957–1965 (2010)CrossRefGoogle Scholar
  73. 73.
    Cheng, M.Y., Chen, K.W., Liu, T.F., Wang, Y.L., Feng, H.P.: Effects of direct current and pulse-reverse copper plating waveforms on the incubation behavior of self-annealing. Thin Solid Films 518, 7468–7474 (2010)CrossRefGoogle Scholar
  74. 74.
    Safaisini, R., Joseph, J.R., Lear, K.L.: Scalable high-CW-power high-speed 980-nm VCSEL arrays. IEEE J. Quantum Electron. 46, 1590–1596 (2010)CrossRefGoogle Scholar
  75. 75.
    Leisner, P., Fredenberg, M., Belov, I.: Pulse and pulse reverse plating of copper from acid sulphate solutions. Trans. Inst. Met. Finish. 88, 243–247 (2010)CrossRefGoogle Scholar
  76. 76.
    Vicenzo, A., Bonelli, S., Cavallotti, P.L.: Pulse plating of matt tin: effect on properties. Trans. Inst. Met. Finish. 88, 248–255 (2010)CrossRefGoogle Scholar
  77. 77.
    Wang, Z.X., Wang, S., Yang, Z., Wang, Z.L.: Influence of additives and pulse parameters on uniformity of through-hole copper plating. Trans. Inst. Met. Finish. 88, 272–276 (2010)CrossRefGoogle Scholar
  78. 78.
    Paatsch, W.: Hydrogen embrittlement in electroplating: avoidance using pulse plating. Trans. Inst. Met. Finish. 88, 277–278 (2010)CrossRefGoogle Scholar
  79. 79.
    Imaz, N., García-Lecína, E., Díez, J.A.: Corrosion properties of double layer nickel coatings obtained by pulse plating techniques. Trans. Inst. Met. Finish. 88, 256–261 (2010)CrossRefGoogle Scholar
  80. 80.
    Paatsch, W., Mollath, G.: Operating map—tool for plating functional layers. Trans. Inst. Met. Finish. 88, 234–236 (2010)CrossRefGoogle Scholar
  81. 81.
    Richoux, V., Diliberto, S., Boulanger, C.: Pulsed electroplating: a derivate form of electrodeposition for improvement of (Bi1-xSbx)2Te3 thin films. J. Electron. Mater. 39, 1914–1919 (2010)CrossRefGoogle Scholar
  82. 82.
    Farr, J.P.G.: Electroplating, electrode kinetics and electrocrystallisation. Trans. Inst. Met. Finish. 88, 262–265 (2010)CrossRefGoogle Scholar
  83. 83.
    Vasilakopoulos, D., Bouroushian, M.: Electrochemical codeposition of PMMA particles with zinc. Surf. Coat. Technol. 205, 110–117 (2010)CrossRefGoogle Scholar
  84. 84.
    Chandrasekar, M.S., Shanmugasigamani, Malathy, P.: Synergetic effects of pulse constraints and additives in electrodeposition of nanocrystalline zinc: corrosion, structural and textural characterization. Mater. Chem. Phys. 124, 516–528 (2010)CrossRefGoogle Scholar
  85. 85.
    Ravi, S., Ganesh, K.V., Ramanathan, A., Annamalai, J., Jaiswal, P.K.: Development of nano crystalline nickel coating for engineering applications. In: Key Engineering Materials, pp. 487–492. (2010)Google Scholar
  86. 86.
    Zhang, G.P., Sun, K.H., Zhang, B., Gong, J., Sun, C., Wang, Z.G.: Tensile and fatigue strength of ultrathin copper films. Mater. Sci. Eng. A 483–484, 387–390 (2008)Google Scholar
  87. 87.
    Lajoie, T.W., Ramirez, J.J., Kilin, D.S., Micha, D.A.: Optical properties of amorphous and crystalline silicon surfaces functionalized with Agn adsorbates. Int. J. Quantum Chem. 110, 3005–3014 (2010)CrossRefGoogle Scholar
  88. 88.
    Qiang, L., Weiping, L., Huicong, L., Liqun, Z.: Fabrication of nanostructured electroforming copper layer by means of an ultrasonic-assisted mechanical treatment. Chin. J. Aeronaut. 23, 599–603 (2010)CrossRefGoogle Scholar
  89. 89.
    Mohebbi, M.S., Akbarzadeh, A.: Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Mater. Sci. Eng. A 528, 180–188 (2010)CrossRefGoogle Scholar
  90. 90.
    Lu, Y., Wang, L.: Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading. Int. J. Pavement Eng. 11, 393–401 (2010)CrossRefGoogle Scholar
  91. 91.
    Mozafari, M., Moztarzadeh, F., Rabiee, M., Azami, M., Maleknia, S., Tahriri, M., Moztarzadeh, Z., Nezafati, N.: Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram. Int. 36, 2431–2439 (2010)CrossRefGoogle Scholar
  92. 92.
    Chu, J.P., Wang, Y.C.: Sputter-deposited Cu/Cu(O) multilayers exhibiting enhanced strength and tunable modulus. Acta Mater. 58, 6371–6378 (2010)CrossRefGoogle Scholar
  93. 93.
    Xia, K.: Consolidation of particles by severe plastic deformation: mechanism and applications in processing bulk ultrafine and nanostructured alloys and composites. Adv. Eng. Mater. 12, 724–729 (2010)CrossRefGoogle Scholar
  94. 94.
    Bernstein, M., Gotman, I., Makarov, C., Phadke, A., Radin, S., Ducheyne, P., Gutmanas, E.Y.: Low temperature fabrication of β-TCP-PCL nanocomposites for bone implants. Adv. Eng. Mater. 12, B341–B347 (2010)CrossRefGoogle Scholar
  95. 95.
    Savarala, S., Ahmed, S., Ilies, M.A., Wunder, S.L.: Formation and colloidal stability of dmpc supported lipid bilayers on SiO2 nanobeads. Langmuir 26, 12081–12088 (2010)CrossRefGoogle Scholar
  96. 96.
    Jung, M.H., Yun, H.G., Kim, S., Kang, M.G.: ZnO nanosphere fabrication using the functionalized polystyrene nanoparticles for dye-sensitized solar cells. Electrochim. Acta 55, 6563–6569 (2010)CrossRefGoogle Scholar
  97. 97.
    Hosseinkhani, H., Hosseinkhani, M., Hattori, S., Matsuoka, R., Kawaguchi, N.: Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J. Biomed. Mater. Res. A 94, 1–8 (2010)Google Scholar
  98. 98.
    Vesce, L., Riccitelli, R., Soscia, G., Brown, T.M., Di Carlo, A., Reale, A.: Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: study and experimentation of TiCl4 treatment. J. Non Cryst. Solids 356, 1958–1961 (2010)CrossRefGoogle Scholar
  99. 99.
    Deka, H., Karak, N.: Influence of highly branched poly(amido amine) on the properties of hyperbranched polyurethane/clay nanocomposites. Mater. Chem. Phys. 124, 120–128 (2010)CrossRefGoogle Scholar
  100. 100.
    Cao, X., Pettitt, M.E., Wode, F., Sancet, M.P.A., Fu, J., Jian, J., Callow, M.E., Callow, J.A., Rosenhahn, A., Grunze, M.: Interaction of zoospores of the green alga ulva with bioinspired micro- and nanostructured surfaces prepared by polyelectrolyte layer-by-layer self-assembly. Adv. Funct. Mater. 20, 1984–1993 (2010)CrossRefGoogle Scholar
  101. 101.
    Burg, B.R., Bianco, V., Schneider, J., Poulikakos, D.: Electrokinetic framework of dielectrophoretic deposition devices. J. Appl. Phys. 107, (2010)Google Scholar
  102. 102.
    Khazrayie, M.A., Aghdam, A.R.S.: Si3N4/Ni nanocomposite formed by electroplating: effect of average size of nanoparticulates. Trans. Nonferr. Met. Soc. China (English Edition) 20, 1017–1023 (2010)CrossRefGoogle Scholar
  103. 103.
    Aliov, M.K., Sabur, A.R.: Formation of a novel hard binary SiO2/quantum dot nanocomposite with predictable electrical conductivity. Mod. Phys. Lett. B 24, 89–96 (2010)CrossRefGoogle Scholar
  104. 104.
    Aliofkhazraei, M., Sabour Rouhaghdam, A.: Fabrication of TiC/WC ultra hard nanocomposite layers by plasma electrolysis and study of its characteristics. Surf. Coat. Technol. (2010)Google Scholar
  105. 105.
    Mirzamohammadi, S., Aliov, M.K., Sabur, A.R., Hassanzadeh-Tabrizi, A.: Study of wear resistance and nanostructure of tertiary Al2O3/Y2O3/CNT pulsed electrodeposited ni-based nanocomposite. Mater. Sci. 46, 76–86 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Materials Engineering DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations