Advertisement

Nanocoatings pp 111-147 | Cite as

Size Effect in Electrochemical Properties of Nanostructured Coatings

  • Mahmood AliofkhazraeiEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

This chapter starts the discussion about size effect in electrochemical properties of nanocoatings and its real usage through different examples. It starts from thermodynamic equilibriums for nanostructured materials and goes through different reported papers in this field. Size effect in nanometric scale has been compared with larger scales by some examples. Detailed discussions about some methods (especially electrochemical deposition) with enough examples were presented in this chapter. Different parts of this chapter include discussions about thermodynamic equilibrium, classical nucleation theory, atomic nucleation theory, growth of 3-D nano-nucleuses, pulsed electrochemical deposition method and nanostructured coating properties.

Keywords

Composite Film Cathode Surface Nanostructure Coating PVDF Film Nanocomposite Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Huang, R., Guo, L.H.: Lack of nano size effect on electrochemistry of dopamine at a gold nanoparticle modified indium tin oxide electrode. Sci. China Chem. 53, 1778–1783 (2010)Google Scholar
  2. 2.
    Billy, E., Maillard, F., Morin, A., Guetaz, L., Emieux, F., Thurier, C., Doppelt, P., Donet, S., Mailley, S.: Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell. J. Power Sour. 195, 2737–2746 (2010)Google Scholar
  3. 3.
    Wang, X.M., Xia, Y.Y.: Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation. Electrochim. Acta 54, 7525–7530 (2009)Google Scholar
  4. 4.
    Okubo, M., Hosono, E., Kudo, T., Zhou, H.S., Honma, I.: Size effect on electrochemical property of nanocrystalline LiCoO2 synthesized from rapid thermal annealing method. Solid State Ion. 180, 612–615 (2009)Google Scholar
  5. 5.
    Malheiro, A.R., Perez, J., Villullas, H.M.: Well-alloyed PtFeC nanocatalysts of controlled composition and same particle size: oxygen reduction and methanol tolerance. J. Electrochem. Soc. 156, B51–B58 (2009)Google Scholar
  6. 6.
    Leontyev, I.N., Chernyshov, D.Y., Guterman, V.E., Pakhomova, E.V., Guterman, A.V.: Particle size effect in carbon supported Pt-Co alloy electrocatalysts prepared by the borohydride method: XRD characterization. Appl. Catal. A Gen. 357, 1–4 (2009)Google Scholar
  7. 7.
    Lee, J.I., Jeong, Y.H., No, H.C., Hannebauer, R., Yoo, S.K.: Size effect of nanometer vacuum gap thermionic power conversion device with CsI coated graphite electrodes. Appl. Phys. Lett. 95 (2009)Google Scholar
  8. 8.
    Gu, Y., St-Pierre, J., Joly, A., Goeke, R., Datye, A., Atanassov, P.: Aging studies of Pt/glassy carbon model electrocatalysts. J. Electrochem. Soc. 156, B485–B492 (2009)Google Scholar
  9. 9.
    Campbell, F.W., Belding, S.R., Baron, R., Xiao, L., Compton, R.G.: Hydrogen peroxide electroreduction at a silver-nanoparticle array: investigating nanoparticle size and coverage effects. J. Phys. Chem. C 113, 9053–9062 (2009)Google Scholar
  10. 10.
    Borghols, W.J.H., Wagemaker, M., Lafont, U., Kelder, E.M., Mulder, F.M.: Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 131, 17786–17792 (2009)Google Scholar
  11. 11.
    Alanyalioğlu, M., Bayrakğeken, F., Demir, U.: Preparation of PbS thin films: a new electrochemical route for underpotential deposition. Electrochim. Acta 54, 6554–6559 (2009)Google Scholar
  12. 12.
    Kozhina, G.A., Ermakov, A.N., Fetisov, V.B., Fetisov, A.V., Fishman, A.Y., Petrova, S.A., Zakharov, R.G., Shunyaev, K.Y., Rassokhin, S.V.: Influence of the transition to nanoscaled state on electrochemical properties of LaMnO3+δ oxide. In: Defect and Diffusion Forum, pp. 354–360. (2008)Google Scholar
  13. 13.
    Guo, Y.G., Hu, J.S., Wan, L.J.: Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2877–2887 (2008)Google Scholar
  14. 14.
    Babu, P.K., Chung, J.H., Oldfield, E., Wieckowski, A.: CO surface diffusion on platinum fuel cell catalysts by electrochemical NMR. Electrochim. Acta 53, 6672–6679 (2008)Google Scholar
  15. 15.
    Aliofkhazraei, M., Ahangarani, S., Sabour Rouhaghdam, A.: Effect of the duty cycle of pulsed current on nanocomposite layers formed by pulsed electrodeposition. Rare Met. 29, 209–213 (2010)Google Scholar
  16. 16.
    Rafailovic, L.D., Artner, W., Nauer, G.E., Minic, D.M.: Structure, morphology and thermal stability of electrochemically obtained Ni-Co deposits. Thermochimica Acta 496, 110–116 (2009)Google Scholar
  17. 17.
    Chun, J.Y., Chun, J.H.: A negative value of the interaction parameter for over-potentially deposited hydrogen at Pt, Ir, and Pt-Ir alloy electrode interfaces. Electrochem. Commun. 11, 744–747 (2009)Google Scholar
  18. 18.
    Mao, Z., Ma, J., Wang, J., Sun, B.: The effect of powder preparation method on the corrosion and mechanical properties of TiN-based coatings by reactive plasma spraying. Appl. Surf. Sci. 255, 3784–3788 (2009)Google Scholar
  19. 19.
    Lee, L., He, D., Carcea, A.G., Newman, R.C.: Exploring the reactivity and nanoscale morphology of de-alloyed layers. Corros. Sci. 49, 72–80 (2007)Google Scholar
  20. 20.
    Mandin, P., Cense, J.M., Picard, G., Lincot, D.: Simplified kinetic modelling and numerical simulation of a metal oxide chemical bath electro deposition process at a rotating electrode. Electrochim. Acta 52, 1296–1308 (2006)Google Scholar
  21. 21.
    Cavallotti, P.L., Nobili, L., Vicenzo, A.: Phase structure of electrodeposited alloys. Electrochim. Acta 50, 4557–4565 (2005)Google Scholar
  22. 22.
    Seo, J.H., Kim, U.K., Yim, T.H., Park, Y.B.: Textures and grain growth in nanocrystalline Fe–Ni alloys. In: Materials Science Forum, pp. 3483–3488. (2005)Google Scholar
  23. 23.
    Gulivets, A.N., Zabludovsky, V.A., Baskevich, A.S., Shtapenko, E.P., Ganitch, R.P.: Structural transitions of Ni-P films electrodeposited by pulsed current. Trans. Inst. Met. Finish. 82, 147–149 (2004)Google Scholar
  24. 24.
    Glinkina, I.V., Durov, V.A., Mel’nitchenko, G.A.: Modelling of electrolyte mixtures with application to chemical equilibria in mixtures—prototypes of blood's plasma and calcification of soft tissues. J. Mol. Liq. 110, 63–67 (2004)Google Scholar
  25. 25.
    Switzer, J.A., Kothari, H.M., Bohannan, E.W.: Thermodynamic to kinetic transition in epitaxial electrodeposition. J. Phys. Chem. B 106, 4027–4031 (2002)Google Scholar
  26. 26.
    Fang, B., Zhou, C., Liu, X., Duan, S.: Performance of a novel Ni/Nb cathode material for molten carbonate fuel cells (MCFC). J. Appl. Electrochem. 31, 201–205 (2001)Google Scholar
  27. 27.
    Wu, Q., Barkey, D.: Faceting and roughening transitions on copper single crystals in acid sulfate plating baths with chloride. J. Electrochem. Soc. 147, 1038–1045 (2000)Google Scholar
  28. 28.
    Vaškelis, A., Norkus, E.: Autocatalytic processes of copper(II) and silver(I) reduction by cobalt(II) complexes. Electrochim. Acta. 44, 3667–3677 (1999)Google Scholar
  29. 29.
    Bruet, H., Bonino, J.P., Rousset, A., Chauveau, M.E.: Structure of zinc-nickel alloyelectrodeposits. J. Mater. Sci. 34, 881–886 (1999)Google Scholar
  30. 30.
    Chmielewski, M., Grzeszczuk, M., Kalenik, J., Kpas-Suwara, A.: Evaluation of the potential dependence of 2D-3D growth rates and structures of polypyrrole films in aqueous solutions of hexafluorates. J. Electroanal. Chem. 647, 169–180 (2010)Google Scholar
  31. 31.
    Gopalakrishnan, N., Elanchezhiyan, J., Bhuvana, K.P., Balasubramanian, T.: Nucleation and characterization of Zn1-xMnxO thin films deposited on different substrates. Phys. B Condens. Matter 404, 1563–1567 (2009)Google Scholar
  32. 32.
    Vasilakopoulos, D., Bouroushian, M., Spyrellis, N.: Electrocrystallisation of zinc from acidic sulphate baths; A nucleation and crystal growth process. Electrochim. Acta 54, 2509–2514 (2009)Google Scholar
  33. 33.
    Chen, S., Liu, W., Huang, Z., Liu, X., Zhang, Q., Lu, X.: The simulation of the electrochemical cathodic Ca–P deposition process. Mater. Sci. Eng. C 29, 108–114 (2009)Google Scholar
  34. 34.
    Frank, S., Roberts, D.E., Rikvold, P.A.: Effects of lateral diffusion on morphology and dynamics of a microscopic lattice-gas model of pulsed electrodeposition. J. Chem. Phys. 122, 1–10 (2005)Google Scholar
  35. 35.
    Berthier, F., Legrand, B., Creuze, J., Tétot, R.: Atomistic investigation of the Kolmogorov-Johnson-Mehl-Avrami law in electrodeposition process. J. Electroanal. Chem. 561, 37–52 (2004)Google Scholar
  36. 36.
    Berthier, F., Legrand, B., Braems, I., Creuze, J., Tétot, R.: Voltammetry and electrodeposition in the presence of attractive interactions: II. From Monte Carlo simulations to the KJMA-ECNT approach. J. Electroanal. Chem. 573, 377–389 (2004)Google Scholar
  37. 37.
    Berthier, F., Legrand, B., Creuze, J., Tétot, R.: Ag/Cu (0 0 1) electrodeposition: beyond the classical nucleation theory. J. Electroanal. Chem. 562, 127–134 (2004)Google Scholar
  38. 38.
    Budevski, E., Staikov, G., Lorenz, W.J.: Electrocrystallization nucleation and growth phenomena. Electrochim. Acta. 45, 2559–2574 (2000)Google Scholar
  39. 39.
    Pignard, S., Goglio, G., Radulescu, A., Piraux, L., Dubois, S., Declemy, A., Duvail, J.L.: Study of the magnetization reversal in individual nickel nanowires. J. Appl. Phys. 87, 824–829 (2000)Google Scholar
  40. 40.
    Moina, C.A., De Oliveira-Versic, L., Vazdar, M.: Magnetic domain states in nano-sized Co nuclei electrodeposited onto monocrystalline silicon. Mater. Lett. 58, 3518–3522 (2004)Google Scholar
  41. 41.
    Rynders, R.M., Alkire, R.C.: Use of in situ atomic force microscopy to image copper electrodeposits on platinum. J. Electrochem. Soc. 141, 1166–1173 (1994)Google Scholar
  42. 42.
    Khazrayie, M.A., Aghdam, A.R.S.: Aghdam, Si3N4/Ni nanocomposite formed by electroplating: effect of average size of nanoparticulates. Transactions of Nonferrous Metals Society of China (English Edition), vol. 20, pp. 1017. (2010)Google Scholar
  43. 43.
    Yang, F., Kung, S.C., Cheng, M., Hemminger, J.C., Penner, R.M.: Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 4, 5233–5244 (2010)Google Scholar
  44. 44.
    Akinbulu, I.A., Khene, S., Nyokong, T.: The effects of point of substitution on the formation of manganese phthalocyanine-based molecular materials: surface characterization and electrocatalysis. Thin Solid Films 519, 911–918 (2010)Google Scholar
  45. 45.
    Inguanta, R., Vergottini, F., Ferrara, G., Piazza, S., Sunseri, C.: Effect of temperature on the growth of α-PbO2 nanostructures. Electrochim. Acta. 55, 8556–8562 (2010)Google Scholar
  46. 46.
    Guo, L., Thompson, A., Searson, P.C.: The kinetics of copper island growth on ruthenium oxide in perchlorate solution. Electrochim. Acta 55, 8416–8421 (2010)Google Scholar
  47. 47.
    Lahiri, A., Tadisina, Z.: Synthesis, thermodynamic and magnetic properties of pure hexagonal close packed nickel. Mater. Chem. Phys. 124, 41–43 (2010)Google Scholar
  48. 48.
    Weston, D.P., Harris, S.J., Shipway, P.H., Weston, N.J., Yap, G.N.: Establishing relationships between bath chemistry, electrodeposition and microstructure of Co–W alloy coatings produced from a gluconate bath. Electrochim. Acta 55, 5695–5708 (2010)Google Scholar
  49. 49.
    Best, A.S., Bhatt, A.I., Hollenkamp, A.F.: Ionic liquids with the bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology. J. Electrochem. Soc. 157, A903–A911 (2010)Google Scholar
  50. 50.
    Garfias-García, E., Romero-Romo, M., Ramřez-Silva, M.T., Morales, J., Palomar-Pardavé, M.: Eletrochemical nucleation of polypyrrole onto different substrates. Int. J. Electrochem. Sci. 5, 763–773 (2010)Google Scholar
  51. 51.
    Alvarez, A.E., Salinas, D.R.: Formation of Cu/Pd bimetallic crystals by electrochemical deposition. Electrochim. Acta 55, 3714–3720 (2010)Google Scholar
  52. 52.
    Kirkwood, D., Zoldan, V.C., Pasa, A.A., Zangari, G.: Evolution of surface roughness in electrodeposited Co-Ni-P and Co-Ni films. J. Electrochem. Soc. 157, D181–D186 (2010)Google Scholar
  53. 53.
    Hamlaoui, Y., Tifouti, L., Remazeilles, C., Pedraza, F.: Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: Influence of electrodeposition parameters and of the addition of PEG. Mater. Chem. Phys. 120, 172–180 (2010)Google Scholar
  54. 54.
    Wang, W., Qian, S.Q., Zhou, X.Y.: Microstructure and oxidation-resistant of ZrO2/Ni coatings applied by high-speed jet electroplating. J. Mater. Sci. 45, 1617–1621 (2010)Google Scholar
  55. 55.
    Damian, A., Maroun, F., Allongue, P.: Electrochemical growth and dissolution of Ni on bimetallic Pd/Au(1 1 1) substrates. Electrochim. Acta 55, 8087–8099 (2010)Google Scholar
  56. 56.
    Kim, K.H., Roh, D.K., Song, I.K., Lee, B.C., Baeck, S.H.: Enhanced performance as a lithium-ion battery cathode of electrodeposited V2O5 thin films by e-beam irradiation. J. Solid State Electrochem. 14, 1801–1805 (2010)Google Scholar
  57. 57.
    Jung, A., Natter, H., Hempelmann, R., Diebels, S., Koblischka, R., Hartmann, U., Lach, E.: Study of the magnetic flux density distribution of nickel coated aluminum foams. J. Phys. Conf. Ser. 200 (2010)Google Scholar
  58. 58.
    Ye, W., Yan, J., Ye, Q., Zhou, F.: Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications. J. Phys. Chem. C 114, 15617–15624 (2010)Google Scholar
  59. 59.
    Mahmoudian, M.R., Alias, Y., Basirun, W.J.: Electrodeposition of (pyrrole-co-phenol) on steel surfaces in mixed electrolytes of oxalic acid and DBSA. Mater. Chem. Phys. 124, 1022–1028 (2010)Google Scholar
  60. 60.
    Vegunta, S.S.S., Ngunjiri, J.N., Flake, J.C.: Electrochemical patterning of organic monolayers on silicon. J. Electrochem. Soc. 157, D509–D513 (2010)Google Scholar
  61. 61.
    Solmaz, R., Döner, A., Karda, G.: Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution. Int. J. Hydrogen Energy 35, 10045–10049 (2010)Google Scholar
  62. 62.
    El-Cheick, F.M., Rashwan, F.A., Mahmoud, H.A., El-Rouby, M.: Gold nanoparticle-modified glassy carbon electrode for electrochemical investigation of aliphatic di-carboxylic acids in aqueous media. J. Solid State Electrochem. 14, 1425–1443 (2010)Google Scholar
  63. 63.
    Cherevko, S., Chung, C.H.: Impact of key deposition parameters on the morphology of silver foams prepared by dynamic hydrogen template deposition. Electrochim. Acta 55, 6383–6390 (2010)Google Scholar
  64. 64.
    Song, Y., Ma, Y., Wang, Y., Di, J., Tu, Y.: Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications. Electrochim. Acta 55, 4909–4914 (2010)Google Scholar
  65. 65.
    Ivanova, O.S., Zamborini, F.P.: Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte. Anal. Chem. 82, 5844–5850 (2010)Google Scholar
  66. 66.
    Ballarin, B., Gazzano, M., Tonelli, D.: Effects of different additives on bimetallic Au-Pt nanoparticles electrodeposited onto indium tin oxide electrodes. Electrochim. Acta 55, 6789–6795 (2010)Google Scholar
  67. 67.
    Mirzamohammadi, S., Kiarasi, R., Aliov, M.K., Sabur, A.R., Hassanzadeh-Tabrizi, A.: Study of corrosion resistance and nanostructure for tertiary Al2O3/Y2O3/CNT pulsed electrodeposited Ni based nanocomposite. Trans. Inst. Met. Finish. 88, 93–99 (2010)Google Scholar
  68. 68.
    Kirkpatrick, D.C., Antwi, C., Martin, R.S.: Use of recordable compact discs to fabricate electrodes for microchip-based analysis systems. Anal. Methods 2, 811–816 (2010)Google Scholar
  69. 69.
    Lai, Y., Lin, Z., Chen, Z., Huang, J., Lin, C.: Fabrication of patterned CdS/TiO2 heterojunction by wettability template-assisted electrodeposition. Mater. Lett. 64, 1309–1312 (2010)Google Scholar
  70. 70.
    Sakairi, M., Goto, Y., Fushimi, K., Kikuchi, T., Hideaki, T.: Fabrication of Cu micro-rods with Co-axial dual capillary solution flow type droplet cell and electrodeposition with the cell. Electrochemistry 78, 118–121 (2010)Google Scholar
  71. 71.
    Rheem, Y.: Electrodeposition of GMR Ni/Cu multilayers in a recirculating electrochemical flow reactor. Korean J. Mater. Res. 20, 90–96 (2010)Google Scholar
  72. 72.
    Pan, J., Ji, L., Sun, Y., Wan, P., Cheng, J., Yang, Y., Fan, M.: Preliminary study of alkaline single flowing Zn-O2 battery. Electrochem. Commun. 11, 2191–2194 (2009)Google Scholar
  73. 73.
    Weber, C., Gauda, E., Mizaikoff, B., Kranz, C.: Developmental aspects of amperometric ATP biosensors based on entrapped enzymes. Anal. Bioanal. Chem. 395, 1729–1735 (2009)Google Scholar
  74. 74.
    Du, J., Roukes, M.L., Masmanidis, S.C.: Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates. J. Micromech. Microeng. 19 (2009)Google Scholar
  75. 75.
    Gawlik, G., Jagielski, J.: Ion-induced transformations of a W-Si interface. Vacuum 83, S111–S113 (2009)Google Scholar
  76. 76.
    Hager, C.E., Jones, K.A., Derenge, M.A., Zheleva, T.S.: Activation of ion implanted Si in GaN using a dual AIN annealing cap. J. Appl. Phys. 105 (2009)Google Scholar
  77. 77.
    Ratcliff, E.L., Jenkins, J.L., Nebesny, K., Armstrong, N.R.: Electrodeposited, "textured" poly(3-hexyl-thiophene) (e-P3HT) films for photovoltaic applications. Chem. Mater. 20, 5796–5806 (2008)Google Scholar
  78. 78.
    Dulal, S.M.S.I., Charles, E.A.: Optimisation of electrochemical process parameters for giant magnetoresistance of electrodeposited Ni–Co(Cu)/Cu multilayers. Trans. Inst. Met. Finish. 86, 260–266 (2008)Google Scholar
  79. 79.
    Tang, W., He, A., Liu, Q., Ivey, D.G.: Fabrication and microstructures of sequentially electroplated Sn-Rich Au-Sn alloy solders. J. Elec. Materi. 37, 837–844 (2008)Google Scholar
  80. 80.
    Dulal, S.M.S.I., Charles, E.A.: Electrodeposition and composition modulation of Co–Ni(Cu)/Cu multilayers. J. Alloys Compd. 455, 274–279 (2008)Google Scholar
  81. 81.
    El Bahraoui, T., Errahmani, H., Belghazi, Y., Berrada, A., Dinia, A., Schmerber, G., Lassri, H., Cherkaoui El Moursli, F., Hajji, F.: Structural and magnetic properties of electrodeposited (Co/CoxZn1-x)n thin films. J. Mag. Mag. Mater. 316, 8–12 (2007)Google Scholar
  82. 82.
    Harper, J.F.: Electrophoresis of surfactant-free bubbles. J. Colloid Interf. Sci. 350, 361–367 (2010)Google Scholar
  83. 83.
    Yang, R., Wang, F., Blunk, R.H., Angelopoulos, A.P.: Competing effects of silanol surface concentration and solvent dielectric constant on electrostatic layer-by-layer assembly of silica nanoparticles on gold. J. Colloid Interf. Sci. 349, 148–152 (2010)Google Scholar
  84. 84.
    Laanait, N., Yoon, J., Hou, B., Vanysek, P., Meron, M., Lin, B., Luo, G., Benjamin, I., Schlossman, M.L.: Communications: monovalent ion condensation at the electrified liquid/liquid interface. J. Chem. Phys. 132 (2010)Google Scholar
  85. 85.
    Guerrero-García, G.I., González-Tovar, E., Olvera De La Cruz, M.: Effects of the ionic size-asymmetry around a charged nanoparticle: unequal charge neutralization and electrostatic screening. Soft Matter 6, 2056–2065 (2010)Google Scholar
  86. 86.
    Tong, C.H., Zhu, Y.J.: Finite size effect of ions and dipoles close to charged interfaces. Chin. Phys. B 19 (2010)Google Scholar
  87. 87.
    Biesheuvel, P.M., Bazant, M.Z.: Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81 (2010)Google Scholar
  88. 88.
    Sun, Y., Jacobson, K.B., Golovlev, V.: Label-free detection of biomolecules on microarrays using surface-colloid interaction. Anal. Biochem. 361, 244–252 (2007)Google Scholar
  89. 89.
    Kumar, T.V.V., Prabhakar, S., Raju, G.B.: Adsorption of oleic acid at sillimanite/water interface. J. Colloid Interf. Sci. 247, 275–281 (2002)Google Scholar
  90. 90.
    Nishimura, S., Kodama, M., Yao, K., Imai, Y., Tateyama, H.: Direct surface force measurement for synthetic smectites using the atomic force microscope. Langmuir 18, 4681–4688 (2002)Google Scholar
  91. 91.
    Nishimura, S., Yao, K., Kodama, M., Imai, Y., Ogino, K., Mishima, K.: Electrokinetc study of synthetic smectites by flat plate streaming potential technique. Langmuir 18, 188–193 (2002)Google Scholar
  92. 92.
    Pattanaik, M., Bhaumik, S.K.: Adsorption behaviour of polyvinyl pyrrolidone on oxide surfaces. Mater. Lett. 44, 352–360 (2000)Google Scholar
  93. 93.
    Nishimura, S., Kodama, M., Noma, H., Inoue, K., Tateyama, H.: The use of AFM for direct force measurements between expandable fluorine mica. Colloids Surf. A Physicochem. Eng. Aspects 143, 1–16 (1998)Google Scholar
  94. 94.
    Kubota, K., Jameson, G.J.: A study of the electrophoretic mobility of a very small inert gas bubble suspended in aqueous inorganic electrolyte and cationic surfactant solutions. J. Chem. Eng. Jpn 26, 7–12 (1993)Google Scholar
  95. 95.
    Xiao, A., Yang, J., Zhang, W.: Mesoporous cobalt oxide film prepared by electrodeposition as anode material for Li ion batteries. J. Porous. Mater. 17, 583–588 (2010)Google Scholar
  96. 96.
    Rezaei, B., Damiri, S.: Electrodeposited silver nanodendrites electrode with strongly enhanced electrocatalytic activity. Talanta 83, 197–204 (2010)Google Scholar
  97. 97.
    Ren, X., Wei, Q., Hu, S., Wei, S.: The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. J. Hazard. Mater. 181, 908–915 (2010)Google Scholar
  98. 98.
    Van Parys, H., Telias, G., Nedashkivskyi, V., Mollay, B., Vandendael, I., Van Damme, S., Deconinck, J., Hubin, A.: On the modeling of electrochemical systems with simultaneous gas evolution. Case study: the zinc deposition mechanism. Electrochim. Acta 55, 5709–5718 (2010)Google Scholar
  99. 99.
    Tsuda, T., Boyd, L.E., Kuwabata, S., Hussey, C.L.: Electrochemistry of copper(I) oxide in the 66.7–33.3 mol % urea-choline chloride room-temperature eutectic melt. J. Electrochem. Soc. 157, F96–F103 (2010)Google Scholar
  100. 100.
    Fu, C., Zhou, H., Xie, D., Sun, L., Yin, Y., Chen, J., Kuang, Y.: Electrodeposition of gold nanoparticles from ionic liquid microemulsion. Colloid Polym. Sci. 288, 1097–1103 (2010)Google Scholar
  101. 101.
    Dziewoński, P.M., Grzeszczuk, M.: Impact of the electrochemical porosity and chemical composition on the lithium ion exchange behavior of polypyrroles (ClO4-, TOS-, TFSI-) prepared electrochemically in propylene carbonate. Comparative EQCM, EIS and CV studies. J. Phys. Chem. B 114, 7158–7171 (2010)Google Scholar
  102. 102.
    Son, S.H., Lee, H.K., Park, S.C.: Kinetics of rhodium electrodeposition for semiconductor interconnect applications. Surf. Interface Anal. 42, 1244–1246 (2010)Google Scholar
  103. 103.
    Ang, J.Q., Nguyen, B.T.T., Huang, Y., Toh, C.S.: Ion-selective detection of non-intercalating Na+ using competitive inhibition of K+ intercalation in Prussian blue nanotubes sensor. Electrochim. Acta 55, 7903–7908 (2010)Google Scholar
  104. 104.
    Popczyk, M.: The hydrogen evolution reaction on electrolytic nickel-based coatings containing metallic molybdenum. In: Materials Science Forum, pp. 1036–1041. (2010)Google Scholar
  105. 105.
    Arotiba, O.A., Owino, J.H., Baker, P.G., Iwuoha, E.I.: Electrochemical impedimetry of electrodeposited poly(propylene imine) dendrimer monolayer. J. Electroanal. Chem. 638, 287–292 (2010)Google Scholar
  106. 106.
    Raoof, J.B., Ojani, R., Kiani, A., Rashid-Nadimi, S.: Fabrication of highly porous Pt coated nanostructured Cu-foam modified copper electrode and its enhanced catalytic ability for hydrogen evolution reaction. Int. J. Hydrogen Energy 35, 452–458 (2010)Google Scholar
  107. 107.
    Afonso, M.L., Gomes, A., Carvalho, A., Alves, L.C., Wastin, F., Gonçalves, A.P.: Electrochemical behaviour of uranium (IV) in DMF at vitreous carbon. Electrochim. Acta 54, 7318–7323 (2009)Google Scholar
  108. 108.
    Park, J.Y., Ponnapati, R., Taranekar, P., Advincula, R.C.: Carbazole peripheral poly(benzyl ether) dendrimers at the air-water interface: electrochemical cross-linking and electronanopatterning. Langmuir 26, 6167–6176 (2010)Google Scholar
  109. 109.
    Shpaisman, N., Givan, U., Patolsky, F.: Electrochemical synthesis of morphology-controlled segmented CdSe nanowires. ACS Nano 4, 1901–1906 (2010)Google Scholar
  110. 110.
    Yi, Z., Banzet, M., Offenhäusser, A., Mayer, D.: Fabrication of nanogaps with modified morphology by potential-controlled gold deposition. Phys. Status Solid Rapid Res. Lett. 4, 73–75 (2010)Google Scholar
  111. 111.
    Zeng, D.M., Jiang, Y.X., Zhou, Z.Y., Su, Z.F., Sun, S.G.: In situ FTIR spectroscopic studies of (bi)sulfate adsorption on electrodes of Pt nanoparticles supported on different substrates. Electrochim. Acta 55, 2065–2072 (2010)Google Scholar
  112. 112.
    Rafailovic, L.D., Artner, W., Nauer, G.E., Minic, D.M.: Structure, morphology and thermal stability of electrochemically obtained Ni–Co deposits. Thermochimica Acta 496, 110–116 (2009)Google Scholar
  113. 113.
    Li, X.Z., Wei, X.W., Ye, Y.: A simple method for forming amorphous rare earth-transition metal alloy nanotube arrays. J. NonCryst. Solids 355, 2233–2238 (2009)Google Scholar
  114. 114.
    Park, K., Xiao, F., Yoo, B.Y., Rheem, Y., Myung, N.V.: Electrochemical deposition of thermoelectric SbxTey thin films and nanowires. J. Alloys Compd. 485, 362–366 (2009)Google Scholar
  115. 115.
    Xu, F., Lu, Y., Xie, Y., Liu, Y.: Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution. Mater. Des. 30, 1704–1711 (2009)Google Scholar
  116. 116.
    Caban, K.: Overpotential deposition of copper on gold micro- and nanoelectrodes. J. Solid State Electrochem. 13, 733–744 (2009)Google Scholar
  117. 117.
    Tang, S.C., Meng, X.K., Vongehr, S.: An additive-free electrochemical route to rapid synthesis of large-area copper nano-octahedra on gold film substrates. Electrochem. Commun. 11, 867–870 (2009)Google Scholar
  118. 118.
    Yang, B., Lu, N., Huang, C., Qi, D., Shi, G., Xu, H., Chen, X., Dong, B., Song, W., Zhao, B., Chi, L.: Electrochemical deposition of silver nanoparticle arrays with tunable density. Langmuir 25, 55–58 (2009)Google Scholar
  119. 119.
    Salimi, A., Noorbakhash, A., Sharifi, E., Semnani, A.: Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles. Biosens. Bioelectron. 24, 792–798 (2008)Google Scholar
  120. 120.
    Starosvetsky, D., Sezin, N., Kovler, M., Ein-Eli, Y.: End-point detection of copper super-filling in small features under a potentiostatic mode of operation. Electrochim. Acta 53, 7884–7889 (2008)Google Scholar
  121. 121.
    Marquardt, B., Eude, L., Gowtham, M., Cho, G., Jeong, H.J., Chatelet, M., Cojocaru, C.S., Kim, B.S., Pribat, D.: Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease. Nanotechnology 19 (2008)Google Scholar
  122. 122.
    Yun, Y., Dong, Z., Shanov, V.N., Doepke, A., Heineman, W.R., Halsall, H.B., Bhattacharya, A., Wong, D.K.Y., Schulz, M.J.: Fabrication and characterization of carbon nanotube array electrodes with gold nanoparticle tips. Sens. Actuators B Chem. 133, 208–212 (2008)Google Scholar
  123. 123.
    Rodriguez, B.B., Hassel, A.W.: Passivity of a nanostructured directionally solidified NiAl-Re alloy as substrate for electrodeposition of gold. J. Electrochem. Soc. 155, K31–K37 (2008)Google Scholar
  124. 124.
    Basile, F., Benito, P., Fornasari, G., Rosetti, V., Scavetta, E., Tonelli, D., Vaccari, A.: Electrochemical synthesis of novel structured catalysts for H2 production. Appl. Catal. B Environ. 91, 563–572 (2009)Google Scholar
  125. 125.
    Atta, N.F., El-Kady, M.F., Galal, A.: Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sensors and Actuators, B: Chemical 141, 566–572 (2009)Google Scholar
  126. 126.
    Chu, C.W., Jang, J.S.C., Chiu, S.M., Chu, J.P.: Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process. Thin Solid Films 517, 4930–4933 (2009)Google Scholar
  127. 127.
    Liu, T.S., Kang, T.F., Lu, L.P., Zhang, Y., Cheng, S.Y.: Au-Fe(III) nanoparticle modified glassy carbon electrode for electrochemical nitrite sensor. J. Electroanal. Chem. 632, 197–200 (2009)Google Scholar
  128. 128.
    Li, M., Ni, F., Wang, Y., Xu, S., Zhang, D., Chen, S., Wang, L.: Sensitive and facile determination of catechol and hydroquinone simultaneously under coexistence of resorcinol with a Zn/Al layered double hydroxide film modified glassy carbon electrode. Electroanalysis 21, 1521–1526 (2009)Google Scholar
  129. 129.
    Dansby-Sparks, R., Chambers, J.Q., Xue, Z.L.: Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes. Anal. Chim. Acta 643, 19–25 (2009)Google Scholar
  130. 130.
    Yilmaz, S.: Adsorptive stripping voltammetric determination of zopiclone in tablet dosage forms and human urine. Colloids Surf. B Biointerfaces 71, 79–83 (2009)Google Scholar
  131. 131.
    Feng, D., Wang, F., Chen, Z.: Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sensors and Actuators, B: Chemical 138, 539–544 (2009)Google Scholar
  132. 132.
    Habib, M.A., Gan, S.W., Rahman, M.: Fabrication of complex shape electrodes by localized electrochemical deposition. J. Mater. Process. Technol. 209, 4453–4458 (2009)Google Scholar
  133. 133.
    Llayaraja, M., Mohan, S., Gnanamuthu, R.M., Saravanan, G.: Nanocrystalline zinc-nickel alloy deposition using pulse electrodeposition (PED) technique. Trans. Inst. Met. Finish. 87, 145–148 (2009)Google Scholar
  134. 134.
    Chekmeneva, E., Díaz-Cruz, J.M., Ariño, C., Esteban, M.: A novel differential pulse voltammetric method on rotating Au-disk electrode for the study of Hg2+ binding. J. Electroanal. Chem. 629, 169–179 (2009)Google Scholar
  135. 135.
    Rybakova, N., Souto, M., Andriyko, Y., Artner, W., Godinho, J., Nauer, G.E.: Morphology and mechanical properties of TiB2 coatings deposited from chloride-fluoride melts by pulse electroplating. J. Electrochem. Soc. 156, D131–D137 (2009)Google Scholar
  136. 136.
    Kawashita, M., Hayakawa, T., Takaoka, G.H., Miyazaki, T.: Structure and adhesion of hydroxyapatite films electrochemically deposited onto titanium substrates under short-pulse current in metastable calcium phosphate solution. In: Key Engineering Materials, pp. 377–380. (2009)Google Scholar
  137. 137.
    Dulal, S.M.S.I., Charles, E.A.: Effect of interface number on giant magnetoresistance. J. Phys. Chem. Solids 71, 309–313 (2010)Google Scholar
  138. 138.
    Rodger, D.C., Fong, A.J., Li, W., Ameri, H., Ahuja, A.K., Gutierrez, C., Lavrov, I., Zhong, H., Menon, P.R., Meng, E., Burdick, J.W., Roy, R.R., Edgerton, V.R., Weiland, J.D., Humayun, M.S., Tai, Y.C.: Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators, B: Chemical 132, 449–460 (2008)Google Scholar
  139. 139.
    Nabirahni, D.M.A., Tang, P.T., Leisner, P.: The electrolytic plating of compositionally modulated alloys and laminated metal nano-structures based on an automated computer-controlled dual-bath system. Nanotechnology 7, 134–143 (1996)Google Scholar
  140. 140.
    Moafi, H.F., Shojaie, A.F., Zanjanchi, M.A.: The comparative study of photocatalytic self-cleaning properties of synthesized nanoscale titania and zirconia onto polyacrylonitrile fibers. J. Appl. Polym. Sci. 118, 2062–2070 (2010)Google Scholar
  141. 141.
    Piasecki, T., Nitsch, K.: Study of sprayed coatings and compound materials by impedance spectroscopy. Surf. Coat. Technol. 205, 1009–1014 (2010)Google Scholar
  142. 142.
    Gan, M., Tomar, V.: Role of length scale and temperature in indentation induced creep behavior of polymer derived Si–C–O ceramics. Mater. Sci. Eng. A 527, 7615–7623 (2010)Google Scholar
  143. 143.
    Alessandri, I.: Plasmonic heating assisted deposition of bare Au nanoparticles on titania nanoshells. J. Colloid Interf. Sci. 351, 576–579 (2010)Google Scholar
  144. 144.
    Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z., Mano, J.F.: Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos. Sci. Technol. 70, 1764–1776 (2010)Google Scholar
  145. 145.
    Xia, X., Wang, H., Huang, F., Cai, Y., Wei, Q.: Surface characterization of aromatic thermotropic liquid crystalline fiber deposited by nanostructured silver. Fibers Polymers 11, 813–818 (2010)Google Scholar
  146. 146.
    Alleg, S., Ibrir, M., Fenineche, N.E., Bensalem, R., Suol, J.J.: Microstructure and magnetic properties of HVOF thermally sprayed Fe75Si15B10 coatings. Surf. Coat. Technol. 205, 281–286 (2010)Google Scholar
  147. 147.
    Haseeb, A.S.M.A., Hasan, M.M., Masjuki, H.H.: Structural and mechanical properties of nanostructured TiO2 thin films deposited by RF sputtering. Surface and Coatings Technology 205, 338–344 (2010)Google Scholar
  148. 148.
    Nathanael, A.J., Mangalaraj, D., Ponpandian, N.: Controlled growth and investigations on the morphology and mechanical properties of hydroxyapatite/titania nanocomposite thin films. Compos. Sci. Technol. 70, 1645–1651 (2010)Google Scholar
  149. 149.
    Wang, L.P., Wang, W., Di, L., Lu, Y.N., Wang, J.Y.: Protein adsorption under electrical stimulation of neural probe coated with polyaniline. Colloids Surf. B Biointerfaces 80, 72–78 (2010)Google Scholar
  150. 150.
    Guo, H., Zhu, Y., Qiu, S., Lercher, A.J., Zhang, H.: Coordination modulation induced synthesis of nanoscale Eu1-xTbxmetal-organic frameworks for luminescent thin films. Adv. Mater. 22, 4190–4192 (2010)Google Scholar
  151. 151.
    Akhavan, O.: Thickness dependent activity of nanostructured TiO2/α-Fe2O3 photocatalyst thin films. Appl. Surf. Sci. 257, 1724–1728 (2010)Google Scholar
  152. 152.
    Zhu, W., Liu, X., Liu, H., Tong, D., Yang, J., Peng, J.: Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. J. Am. Chem. Soc. 132, 12619–12626 (2010)Google Scholar
  153. 153.
    Samyn, P., Deconinck, M., Schoukens, G., Stanssens, D., Vonck, L., Van Den Abbeele, H.: Modifications of paper and paperboard surfaces with a nanostructured polymer coating. Prog. Org. Coat. 69, 442–454 (2010)Google Scholar
  154. 154.
    Sęsęn, M., Khudhayer, W., Karabacak, T., Kosąr, A.: Compact nanostructure integrated pool boiler for microscale cooling applications. Micro Nano Lett. 5, 203–206 (2010)Google Scholar
  155. 155.
    Cranford, S.W., Ortiz, C., Buehler, M.J.: Mechanomutable properties of a PAA/PAH polyelectrolyte complex: rate dependence and ionization effects on tunable adhesion strength. Soft Matter 6, 4175–4188 (2010)Google Scholar
  156. 156.
    Yu, Y., Addai-Mensah, J., Losic, D.: Synthesis of self-supporting gold microstructures with three-dimensional morphologies by direct replication of diatom templates. Langmuir 26, 14068–14072 (2010)Google Scholar
  157. 157.
    Lin, Z.Q., Lai, Y.K., Hu, R.G., Li, J., Du, R.G., Lin, C.J.: A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals. Electrochim. Acta 55, 8717–8723 (2010)Google Scholar
  158. 158.
    Bae, G., Kang, K., Kim, J.J., Lee, C.: Nanostructure formation and its effects on the mechanical properties of kinetic sprayed titanium coating. Mater. Sci. Eng. A 527, 6313–6319 (2010)Google Scholar
  159. 159.
    Liu, M., Tan, M., Liu, G., Wang, H., Xue, F., Deng, X., Li, D.: The effects of modulation period, modulation ratio, and deposition temperature on microstructure and mechanical properties of ZrB2/W multilayers. Sci. China Technol. Sci. 53, 2350–2354 (2010)Google Scholar
  160. 160.
    Homhuan, P., Chaiyakun, S., Thonggoom, R., Panich, N., Tungasmita, S.: Growth and structural characterizations of nanostructured chromium-zirconium-nitride thin films for tribological applications. Mater. Trans. 51, 1651–1655 (2010)Google Scholar
  161. 161.
    Baklanova, N.I., Zaitsev, B.N.: The study of nanostructured interfacial coatings on SiC fibers by atomic force microscopy. In: Key Engineering Materials, pp. 542–545. (2010)Google Scholar
  162. 162.
    Faustini, M., Nicole, L., Boissière, C., Innocenzi, P., Sanchez, C., Grosso, D.: Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater. 22, 4406–4413 (2010)Google Scholar
  163. 163.
    Li, C., Wang, Y., Guo, L., He, J., Pan, Z., Wang, L.: Laser remelting of plasma-sprayed conventional and nanostructured Al2O3-13 wt.%TiO2 coatings on titanium alloy. J. Alloys Compd. 506, 356–363 (2010)Google Scholar
  164. 164.
    Kasatkin, E.V., Potapova, G.F., Erusalimchik, I.G., Stryuchkova, Y.M.: Wear-resistant nanostructured platinum-titanium anodes: I. STM and STS measurements on model ECAPTA specimen. Prot. Met. Phys. Chem. Surf. 46, 559–565 (2010)Google Scholar
  165. 165.
    Qian, L., Shen, W., Shen, B., Qin, G.W., Das, B.: Nanoporous gold-alumina core-shell films with tunable optical properties. Nanotechnology 21 (2010)Google Scholar
  166. 166.
    Chen, W., Gao, W.: Sol-enhanced electroplating of nanostructured Ni-TiO2 composite coatings—the effects of sol concentration on the mechanical and corrosion properties. Electrochim. Acta 55, 6865–6871 (2010)Google Scholar
  167. 167.
    McCrea, J.L.: Industrial implementation of nanostructured cobalt as an alternative to hard chrome. Surf. Eng. 26, 149–152 (2010)Google Scholar
  168. 168.
    Aliofkhazraei, M., Rouhaghdam, A.S., Laleh, M., Shanaghi, A.: Enhancement of corrosion protection of micro-arc oxidation by applying nanostructured TiO2 thin film via the "sol-gel" method. Anti Corros. Methods Mater. 57, 75–82 (2010)Google Scholar
  169. 169.
    Zois, D., Lekatou, A., Vardavoulias, M.: Preparation and characterization of highly amorphous HVOF stainless steel coatings. J. Alloys Compd. 504, S283–S287 (2010)Google Scholar
  170. 170.
    Reisgen, U., Balashov, B., Stein, L., Geffers, C.: Nanophase hardfacing new possibilities for functional surfaces. In: Materials Science Forum, pp. 870–875. (2010)Google Scholar
  171. 171.
    Aliofkhazraei, M., Rouhaghdam, A.S., Ghobadi, E., Mohsenian, E.: Electrodeposition and mechanical and corrosion resistance properties of tertiary Ni–W/Al2O3/CNT nanocomposite coatings. In: Advanced Materials Research, pp. 12–16. (2010)Google Scholar
  172. 172.
    Bociaga, D.: Nanostructured protective carbon layer on the jeweller's metallic material-in vitro verification. J. Nanosci. Nanotechnol. 10, 1191–1195 (2010)Google Scholar
  173. 173.
    Zheludkevich, M.L., Poznyak, S.K., Rodrigues, L.M., Raps, D., Hack, T., Dick, L.F., Nunes, T., Ferreira, M.G.S.: Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros. Sci. 52, 602–611 (2010)Google Scholar
  174. 174.
    Weston, D.P., Harris, S.J., Capel, H., Ahmed, N., Shipway, P.H., Yellup, J.M.: Nanostructured Co–W coatings produced by electrodeposition to replace hard Cr on aerospace components. Trans. Inst. Met. Finish. 88, 47–56 (2010)Google Scholar
  175. 175.
    Zhang, S., Li, Q., Chen, B., Yang, X.: Preparation and corrosion resistance studies of nanometric sol-gel-based CeO2 film with a chromium-free pretreatment on AZ91D magnesium alloy. Electrochim. Acta 55, 870–877 (2010)Google Scholar
  176. 176.
    Li, C.L., Wu, F.B., Lee, J.W., Tsai, Y.Z., Chang, L.C.: Characteristics of Cr2N/Cu multilayered thin films with different bilayer thickness. Surface and Coatings Technology 204, 941–946 (2009)Google Scholar
  177. 177.
    Sherik, A.M., Nabulsi, K.M.: Applications of nanotechnology in oil and gas. Int. J. Nano Biomater. 2, 409–415 (2009)Google Scholar
  178. 178.
    Aliofkhazraei, M., Sabour Rouhaghdam, A.: Study of anodic voltage on properties of complex nanocrystalline carbonitrided titanium fabricated by duplex treatments. Mater. Res. Innov. 14, 177–182 (2010)Google Scholar
  179. 179.
    Aliofkhazraei, M., Hassanzadeh-Tabrizi, S.A., Sabour Rouhaghdam, A., Heydarzadeh, A.: Nanocrystalline ceramic coating on γ-TiAl by bipolar plasma electrolysis (effect of frequency, time and cathodic/anodic duty cycle). Ceram. Int. 35, 2053–2059 (2009)Google Scholar
  180. 180.
    Aliofkhazraei, M., Sabour Rouhaghdam, A., Heydarzadeh, A., Elmkhah, H.: Nanostructured layer formed on CP–Ti by plasma electrolysis (effect of voltage and duty cycle of cathodic/anodic direction). Mater. Chem. Phys. 113, 607–612 (2009)Google Scholar
  181. 181.
    Aliofkhazraei, M., Sabour Rouhaghdam, A., Heydarzadeh, A.: Strong relation between corrosion resistance and nanostructure of compound layer of treated 316 austenitic stainless steel. Mater. Charact. 60, 83–89 (2009)Google Scholar
  182. 182.
    Aliofkhazraei, M., Rouhaghdam, A.S., Denshmaslak, A., Jafarian, H.R., Sabouri, M.: Study of bipolar pulsed nanocrystalline plasma electrolytic carbonitriding on nanostructure of compound layer for CP–Ti. J. Coat. Technol. Res. 5, 497–503 (2008)Google Scholar
  183. 183.
    Kobayashi, Y., Tanase, T., Tabata, T., Miwa, T., Konno, M.: Fabrication and dielectric properties of the BaTiO3-polymer nano-composite thin films. J. Eur. Ceram. Soc. 28, 117–122 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Materials Engineering DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations