Nanocoatings pp 77-110 | Cite as

Characterization of Nanostructured Coatings

  • Mahmood AliofkhazraeiEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Materials with nano-crystalline structure are away from equilibrium state. Nanometric (nano-crystalline) structure is the term which is applied for each material provided that its microstructure comprises of extremely fine particles, measuring from 1 to 100 nm generally. Comparing materials with ordinary structure, nanostructured materials, due to having high density of interface levels and also high volume of crystal imperfections like vacancy and dislocations, show unique and unparallel properties. In inter-crystal areas, atomic density and the way of arrangement of atoms differ from crystal areas and consequently, physical and chemical properties of inter-crystal areas differ from crystal areas as well. The main reason behind this behavioral change can be defined as a result of superficial energy increase in nano-crystalline materials. The special high level of nanostructured materials and following increase of superficial free energy cause that sensitive properties to surface (like superficial reaction phenomena) is improved coupled with accelerating the processes which superficial energy is operated as progressive force.


Passive Film Nanostructured Material Interface Stress Interface Free Energy Free Energy Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal, S., Jain, A., Jain, P., Vyas, D., Ganesan, V., Jain, I.P.: Synthesis of nano-crystalline Zr–M (M=Ni, Co, Fe, Cu) bilayer films and their thermodynamics of hydrogen uptake by resistance measurement. Int. J. Hydrogen Energy 35, 9893–9900 (2010)Google Scholar
  2. 2.
    Carnall, J.M.A., Waudby, C.A., Belenguer, A.M., Stuart, M.C.A., Peyralans, J.J.P., Otto, S.: Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010)Google Scholar
  3. 3.
    Cheluvaraja, S., Ortoleva, P.: Thermal nanostructure: an order parameter multiscale ensemble approach. J. Chem. Phys. 132 (2010)Google Scholar
  4. 4.
    Chen, Z.G., Wang, P.W., Wei, B., Mo, X.M., Cui, F.Z.: Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater. 6, 372–382 (2010)Google Scholar
  5. 5.
    Dussan, K.J., Cardona, C.A., Giraldo, O.H., Gutiérrez, L.F., Pérez, V.H.: Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures. Bioresour. Technol. 101, 9542–9549 (2010)Google Scholar
  6. 6.
    Gu, D., Baumgart, H., Abdel-Fattah, T.M., Namkoong, G.: Synthesis of nested coaxial multiple-walled nanotubes by atomic layer deposition. ACS Nano 4, 753–758 (2010)Google Scholar
  7. 7.
    Ivanova, O.S., Zamborini, F.P.: Size-dependent electrochemical oxidation of silver nanoparticles. J. Am. Chem. Soc. 132, 70–72 (2010)Google Scholar
  8. 8.
    Oliveira, C.L.P., Juul, S., Jørgensen, H.L., Knudsen, B., Tordrup, D., Oteri, F., Falconi, M., Koch, J., Desideri, A., Pedersen, J.S., Andersen, F.F., Knudsen, B.R.: Structure of nanoscale truncated octahedral DNA cages: variation of single-stranded linker regions and influence on assembly yields. ACS Nano 4, 1367–1376 (2010)Google Scholar
  9. 9.
    Perepezko, J.H., Imhoff, S.D., Hebert, R.J.: Nanostructure development during devitrification and deformation. J. Alloys Compds. 495, 360–364 (2010)Google Scholar
  10. 10.
    Rahmani, A., Mousavi, H.Z., Fazli, M.: Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253, 94–100 (2010)Google Scholar
  11. 11.
    Shi, J., Wang, X.: Strain versus dislocation model for understanding the heteroepitaxial growth of nanowires. J. Phys. Chem. C 114, 2082–2088 (2010)Google Scholar
  12. 12.
    Shi, Y., Zhang, F., Hu, Y.S., Sun, X., Zhang, Y., Lee, H.I., Chen, L., Stucky, G.D.: Low-temperature pseudomorphic transformation of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction. J. Am. Chem. Soc. 132, 5552–5553 (2010)Google Scholar
  13. 13.
    Xu, C.H., Zhu, Z.B., Li, G.L., Xu, W.R., Huang, H.X.: Growth of ZnO nanostructure on Cu0.62Zn0.38 brass foils by thermal oxidation. Mater. Chem. Phys. 124, 252–256 (2010)Google Scholar
  14. 14.
    Xu, Q.F., Wang, J.N., Sanderson, K.D.: Organic–inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability. ACS Nano 4, 2201–2209 (2010)Google Scholar
  15. 15.
    Zeng, J., Zhang, Q., Chen, J., Xia, Y.: A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 10, 30–35 (2010)Google Scholar
  16. 16.
    Tominaka, S., Hayashi, T., Nakamura, Y., Osaka, T.: Mesoporous PdCo sponge-like nanostructure synthesized by electrodeposition and dealloying for oxygen reduction reaction. J. Mater. Chem. 20, 7175–7182 (2010)Google Scholar
  17. 17.
    Li, X., Li, P., Luo, M., Chen, X., Chen, J.: Controllable solvo-hydrothermal electrodeposition of lithium vanadate uniform carnation-like nanostructure and their electrochemical performance. J. Solid State Electrochem. 14, 1325–1332 (2010)Google Scholar
  18. 18.
    Zong, Z., Zhang, M., Lu, H., Xu, D., Wang, S., Tian, H., Liu, C., Guo, H., Gao, H., Zou, G.: Synthesis of PbTe/Pb quasi-one-dimensional nanostructure material arrays by electrodeposition. Appl. Phys. Lett. 96 (2010)Google Scholar
  19. 19.
    Ou, K.L., Wu, J., Lai, W.F.T., Yang, C.B., Lo, W.C., Chiu, L.H., Bowley, J.: Effects of the nanostructure and nanoporosity on bioactive nanohydroxyapatite/reconstituted collagen by electrodeposition. J. Biomed. Mater. Res. A 92, 906–912 (2010)Google Scholar
  20. 20.
    Bijani, S., Martínez, L., Gabás, M., Dalchiele, E.A., Ramos-Barrado, J.R.: Low-temperature electrodeposition of Cu2O thin films: modulation of micro-nanostructure by modifying the applied potential and electrolytic bath pH. J. Phys. Chem. C 113, 19482–19487 (2009)Google Scholar
  21. 21.
    Shen, X., Chen, X., Liu, J.H., Huang, X.J.: Free standing Pt-Au bimetallic membranes with a leaf-like nanostructure from agarose-mediated electrodeposition and oxygen gas sensing in room temperature ionic liquids. J. Mater. Chem. 19, 7687–7693 (2009)Google Scholar
  22. 22.
    Jiang, J., Kucernak, A.: Electrodeposition of highly alloyed quaternary PtPdRuOs catalyst with highly ordered nanostructure. Electrochem. Commun. 11, 1005–1008 (2009)Google Scholar
  23. 23.
    Sun, F., Guo, Y., Song, W., Zhao, J., Tang, L., Wang, Z.: Morphological control of Cu2O micro-nanostructure film by electrodeposition. J. Cryst. Growth 304, 425–429 (2007)Google Scholar
  24. 24.
    Yeo, S.H., Teh, L.K., Wong, C.C.: Fabrication & characterization of macroporous CdSe nanostructure via colloidal crystal templating with electrodeposition method. J. Porous. Mater. 13, 281–285 (2006)Google Scholar
  25. 25.
    Bux, S.K., Fleurial, J.P., Kaner, R.B.: Nanostructured materials for thermoelectric applications. Chem. Commun. 46, 8311–8324 (2010)Google Scholar
  26. 26.
    Vaqueiro, P., Powell, A.V.: Recent developments in nanostructured materials for high-performance thermoelectrics. J. Mater. Chem. 20, 9577–9584 (2010)Google Scholar
  27. 27.
    Garza-Navarro, M.A., Torres-Castro, A., Garca-Gutiérrez, D.I., Ortiz-Rivera, L., Wang, Y.C., González-González, V.A.: Synthesis of spinel-metal-oxide/biopolymer hybrid nanostructured materials. J. Phys. Chem. C 114, 17574–17579 (2010)Google Scholar
  28. 28.
    Ren, W., Cheng, C., Ren, Z., Zhong, Y.: The effect of the precursor nanopowder size on the thermoelectric properties of nanostructured BiSbTe bulk materials. Phys. B Condens. Matter 405, 4931–4936 (2010)Google Scholar
  29. 29.
    Jeong, G., Kim, Y.U., Krachkovskiy, S.A., Lee, C.K.: A nanostructured SiAl0.2O anode material for lithium batteries. Chem. Mater. 22, 5570–5579 (2010)Google Scholar
  30. 30.
    McGlone, T., Streb, C., Long, D.L., Cronin, L.: Assembly of pure silver–tungsten–oxide frameworks from nanostructured solution processable clusters and their evolution into materials with a metallic component. Adv. Mater. 22, 4275–4279 (2010)Google Scholar
  31. 31.
    Jadoon, A.N.K., Khan, M.Z.: Surfaces, coatings and nanostructured materials. Surf. Eng. 26, 497 (2010)Google Scholar
  32. 32.
    Birringer, R.: Nanocrystalline materials. Mater. Sci. Eng. A 117, 33–43 (1989)Google Scholar
  33. 33.
    Wang, Z., Zhu, W., Zhao, C., Tan, O.K.: Dense PZT thick films derived from sol-gel based nanocomposite process. Mater. Sci. Eng. B 99, 56–62 (2003)Google Scholar
  34. 34.
    Shanaghi, A., Sabour, A.R., Shahrabi, T., Aliofkhazraee, M.: Corrosion protection of mild steel by applying TiO2 nanoparticle coating via sol-gel method. Prot. Metals Phys. Chem. Surf. 45, 305–311 (2009)Google Scholar
  35. 35.
    Lim, S.K., Hong, E.P., Song, Y.H., Choi, H.J., Chin, I.J.: Poly(ethylene terephthalate) and polyhedral oligomeric silsesquioxane nanohybrids and their physical characteristics. J. Mater. Sci. 45, 5984–5987 (2010)Google Scholar
  36. 36.
    Evers, W.H., Nijs, B.D., Filion, L., Castillo, S., Dijkstra, M., Vanmaekelbergh, D.: Entropy-driven formation of binary semiconductor–nanocrystal superlattices. Nano Lett. 10, 4235–4241 (2010)Google Scholar
  37. 37.
    Langhammer, C., Larsson, E.M., Kasemo, B., Zoric, I.: Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Lett. 10, 3529–3538 (2010)Google Scholar
  38. 38.
    Barghamadi, M.: Kinetics and thermodynamics of isothermal curing reaction of epoxy-4, 4'-diaminoazobenzene reinforced with nanosilica and nanoclay particles. Polym. Compos. 31, 1442–1448 (2010)Google Scholar
  39. 39.
    Yuan, Q., Chen, J., Yang, Y., Misra, R.D.K.: Nanoparticle interface driven microstructural evolution and crystalline phases of polypropylene: the effect of nanoclay content on structure and physical properties. Mater. Sci. Eng. A 527, 6002–6011 (2010)Google Scholar
  40. 40.
    Datta, S., Conlisk, A.T., Kanani, D.M., Zydney, A.L., Fissell, W.H., Roy, S.: Characterizing the surface charge of synthetic nanomembranes by the streaming potential method. J. Colloid Interf. Sci. 348, 85–95 (2010)Google Scholar
  41. 41.
    Gupta, A., Sharma, S., Joshi, M.R., Agarwal, P., Balani, K.: Grain growth behavior of Al2O3 nanomaterials: a review. In: Materials Science Forum, pp. 87–130. (2010)Google Scholar
  42. 42.
    Karimi, E.Z., Zebarjad, S.M., Khaki, J.V., Izadi, H.: Production of carbon nanotubes using mechanical milling in the presence of an exothermic reaction. J. Alloys Compd. 505, 37–42 (2010)Google Scholar
  43. 43.
    Slota, J.E., He, X., Huck, W.T.S.: Controlling nanoscale morphology in polymer photovoltaic devices. Nano Today 5, 231–242 (2010)Google Scholar
  44. 44.
    Zhou, Y., Yang, M., Sun, K., Tang, Z., Kotov, N.A.: Similar topological origin of chiral centers in organic and nanoscale inorganic structures: Effect of stabilizer chirality on optical isomerism and growth of cdte nanocrystals. J. Am. Chem. Soc. 132, 6006–6013 (2010)Google Scholar
  45. 45.
    Lamour, G., Eftekhari-Bafrooei, A., Borguet, E., Souès, S., Hamraoui, A.: Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. Biomaterials 31, 3762–3771 (2010)Google Scholar
  46. 46.
    Macedo, T.R., Petrucelli, G.C., Airoldi, C.: Sorption and thermodynamic of cation-basic center interactions of inorganic–organic hybrids synthesized from RUB-18. Thermochimica Acta 502, 30–34 (2010)Google Scholar
  47. 47.
    Hóbor, S., Kovács, Z., Révész, A.: Estimation of heat production during high pressure torsion of Cu-based metallic glass. J. Alloys Compd. 495, 352–355 (2010)Google Scholar
  48. 48.
    Liggieri, L., Miller, R.: Relaxation of surfactants adsorption layers at liquid interfaces. Curr. Opin. Colloid Interf. Sci. 15, 256–263 (2010)Google Scholar
  49. 49.
    Kukhar, V.G., Pertsev, N.A., Kholkin, A.L.: Thermodynamic theory of strain-mediated direct magnetoelectric effect in multiferroic film-substrate hybrids. Nanotechnology 21 (2010)Google Scholar
  50. 50.
    Wang, C., Tian, W., Ding, Y., Ma, Y.Q., Wang, Z.L., Markovic, N.M., Stamenkovic, V.R., Daimon, H., Sun, S.: Rational synthesis of heterostructured nanoparticles with morphology control. J. Am. Chem. Soc. 132, 6524–6529 (2010)Google Scholar
  51. 51.
    Castro, R.H.R., Torres, R.B., Pereira, G.J., Gouvėa, D.: Interface energy measurement of MgO and ZnO: understanding the thermodynamic stability of nanoparticles. Chem. Mater. 22, 2502–2509 (2010)Google Scholar
  52. 52.
    Sampayo, J.G., Malijevsk, A., Müller, E.A., De Miguel, E., Jackson, G.: Communications: evidence for the role of fluctuations in the thermodynamics of nanoscale drops and the implications in computations of the surface tension. J. Chem. Phys. 132 (2010)Google Scholar
  53. 53.
    Neiman, A., Tsipis, E., Beketov, I., Kotov, Y., Murzakaiev, A., Samatov, O.: Solid state interactions in nano-sized oxides. Solid State Ionics 177, 403–410 (2006)Google Scholar
  54. 54.
    Fan, H.B., Yuen, M.M.F.: A multi-scale approach for investigation of interfacial delamination in electronic packages. Microelectron. Reliab. 50, 893–899 (2010)Google Scholar
  55. 55.
    Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A Solids 28, 926–934 (2009)Google Scholar
  56. 56.
    Avazmohammadi, R., Yang, F., Abbasion, S.: Effect of interface stresses on the elastic deformation of an elastic half-plane containing an elastic inclusion. Int. J. Solids Struct. 46, 2897–2906 (2009)Google Scholar
  57. 57.
    Liu, X., Li, S., Sheng, N.: A cohesive finite element for quasi-continua. Comput. Mech. 42, 543–553 (2008)Google Scholar
  58. 58.
    Yvonnet, J., Quang, H.L., He, Q.C.: An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Comput. Mech. 42, 119–131 (2008)Google Scholar
  59. 59.
    Tong, L., Sun, X., Tan, P.: Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. J. Compos. Mater. 42, 5–23 (2008)Google Scholar
  60. 60.
    Heinrich, B.W., Iacovita, C., Rastei, M.V., Limot, L., Ignatiev, P.A., Stepanyuk, V.S., Bucher, J.P.: A spin-selective approach for surface states at Co nanoislands. Eur. Phys. J. B 75, 49–56 (2010)Google Scholar
  61. 61.
    Sheibani, S., Heshmati-Manesh, S., Ataie, A.: Structural investigation on nano-crystalline Cu–Cr supersaturated solid solution prepared by mechanical alloying. J. Alloys Compd. 495, 59–62 (2010)Google Scholar
  62. 62.
    Williams, W.B., Mullany, B.A., Parker, W.C., Moyer, P.J., Randles, M.H.: Using quantum dots to tag subsurface damage in lapped and polished glass samples. Appl. Opt. 48, 5155–5163 (2009)Google Scholar
  63. 63.
    Hu, M.Z., Lai, P., Bhuiyan, M.S., Tsouris, C., Gu, B., Parans Paranthaman, M., Gabitto, J., Harrison, L.: Synthesis and characterization of anodized titanium–oxide nanotube arrays. J. Mater. Sci. 44, 2820–2827 (2009)Google Scholar
  64. 64.
    Fichtner, M.: Properties of nanoscale metal hydrides. Nanotechnology 20 (2009)Google Scholar
  65. 65.
    Lele, S.P., Anand, L.: A large-deformation strain-gradient theory for isotropic viscoplastic materials. Int. J. Plast. 25, 420–453 (2009)Google Scholar
  66. 66.
    Jean, Y.C., Hung, W.S., Lo, C.H., Chen, H., Liu, G., Chakka, L., Cheng, M.L., Nanda, D., Tung, K.L., Huang, S.H., Lee, K.R., Lai, J.Y., Sun, Y.M., Hu, C.C., Yu, C.C.: Applications of positron annihilation spectroscopy to polymeric membranes. Desalination 234, 89–98 (2008)Google Scholar
  67. 67.
    Brazard, J., Ley, C., Lacombat, F., Plaza, P., Martin, M.M., Checcucci, G., Lenci, F.: Primary photoprocesses involved in the sensory protein for the photophobie response of Blepharisma japonicum. J. Phys. Chem. B 112, 15182–15194 (2008)Google Scholar
  68. 68.
    de la Vega, U.P., Rettberg, P., Reitz, G.: Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans. Adv. Space Res. 40, 1672–1677 (2007)Google Scholar
  69. 69.
    Liu, Y., Cain, J.P., Wang, H., Laskin, A.: Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach. J. Phys. Chem. A 111, 10026–10043 (2007)Google Scholar
  70. 70.
    Wang, Q., Yang, F., Yang, Q., Guan, H., Chen, J.: The magnetism properties and surface microstructure of NBR/Fe3O4 composites. Int. J. Polym. Mater. 59, 902–910 (2010)Google Scholar
  71. 71.
    Valcke, E., Marien, A., Smets, S., Li, X., Mokni, N., Olivella, S., Sillen, X.: Osmosis-induced swelling of Eurobitum bituminized radioactive waste in constant total stress conditions. J. Nucl. Mater. 406, 304–316 (2010)Google Scholar
  72. 72.
    Choi, Y.H., Bulliard, X., Benayad, A., Leterrier, Y., Mnson, J.A.E., Lee, K.H., Choi, D., Park, J.J., Kim, J.: Design and fabrication of compositionally graded inorganic oxide thin films: mechanical, optical and permeation characteristics. Acta Mater. 58, 6495–6503 (2010)Google Scholar
  73. 73.
    Goudarzi, T., Avazmohammadi, R., Naghdabadi, R.: Surface energy effects on the yield strength of nanoporous materials containing nanoscale cylindrical voids. Mech. Mater. 42, 852–862 (2010)Google Scholar
  74. 74.
    Park, J.M., Jang, J.H., Wang, Z.J., Kwon, D.J., Devries, K.L.: Self-sensing of carbon fiber/carbon nanofiber-epoxy composites with two different nanofiber aspect ratios investigated by electrical resistance and wettability measurements. Compos. A Appl. Sci. Manuf. 41, 1702–1711 (2010)Google Scholar
  75. 75.
    Zhang, L., Luo, M., Sun, S., Ma, J., Li, C.: Effect of surface structure of Nano-CaCO3 particles on mechanical and rheological properties of PVC composites. J. Macromol. Sci. B Phys. 49, 970–982 (2010)Google Scholar
  76. 76.
    Brownlow, S.R., Moravsky, A.P., Kalugin, N.G., Majumdar, B.S.: Probing deformation of double-walled carbon nanotube (DWNT)/epoxy composites using FTIR and Raman techniques. Compos. Sci. Technol. 70, 1460–1468 (2010)Google Scholar
  77. 77.
    Gavrilov, N.V., Mamaev, A.S., Plotnikov, S.A., Rubshtein, A.P., Trakhtenberg, I., Ugov, V.A.: Comparison testing of diamond-like a-C:H coatings prepared in plasma cathode-based gas discharge and ta–C coatings deposited by vacuum arc. Surf. Coat. Technol. 204, 4018–4024 (2010)Google Scholar
  78. 78.
    Schaefer, B., Nirschl, H.: Electrohydrodynamic transport in nanoporous packed beds. Chem. Eng. Sci. 65, 6320–6326 (2010)Google Scholar
  79. 79.
    Kondo, M., Heisler, I.A., Meech, S.R.: Reactive dynamics in micelles: Auramine O in solution and adsorbed on regular micelles. J. Phys. Chem. B 114, 12859–12865 (2010)Google Scholar
  80. 80.
    Yao, Y., Fu, Q., Wang, Z., Tan, D., Bao, X.: Growth and characterization of two-dimensional FeO nanoislands supported on Pt(111). J. Phys. Chem. C 114, 17069–17079 (2010)Google Scholar
  81. 81.
    Lioutas, C.B., Frangis, N., Todorov, I., Chung, D.Y., Kanatzidis, M.G.: Understanding nanostructures in thermoelectric materials: an electron microscopy study of AgPb18SbSe20 crystals. Chem. Mater. 22, 5630–5635 (2010)Google Scholar
  82. 82.
    Levitas, V.I., Javanbakht, M.: Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Phys. Rev. Lett. 105 (2010)Google Scholar
  83. 83.
    Gniadek, M., Donten, M., Stojek, Z.: Electroless formation of conductive polymer–metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties. Electrochim. Acta 55, 7737–7744 (2010)Google Scholar
  84. 84.
    Deepthi, B., Barshilia, H.C., Rajam, K.S., Konchady, M.S., Pai, D.M., Sankar, J., Kvit, A.V.: Structure, morphology and chemical composition of sputter deposited nanostructured Cr–WS2 solid lubricant coatings. Surf. Coat. Technol. 205, 565–574 (2010)Google Scholar
  85. 85.
    Zhou, M., Li, J., Yan, F., Fan, X., Cai, L.: A facile "air-molding" method for nanofabrication. Langmuir 26, 14889–14893 (2010)Google Scholar
  86. 86.
    Choi, Y.J., Chen, T.Y., Chiu, C.K., Luo, T.J.M.: Fabricating nanocomposite catalysts through interfacial fusion of metallic nanoparticles. Mater. Res. Soc. Symp. Proc. pp. 33–38 (2010)Google Scholar
  87. 87.
    Koh, J.H., Seo, J.A., Koh, J.K., Kim, J.H.: Self-assembled structures of hydrogen-bonded poly(vinyl chloride-g-4-vinyl pyridine) graft copolymers. Nanotechnology 21 (2010)Google Scholar
  88. 88.
    Chiu, P.Y., Shah, K., Sinnott, S.B.: Nanoindentation of surfactant aggregates. J. Colloid Interf. Sci. 349, 196–204 (2010)Google Scholar
  89. 89.
    Konysheva, E., Blackley, R., Irvine, J.T.S.: Conductivity behavior of composites in the La0.6Sr 0.4CoO3±δ-CeO2 system: function of connectivity and interfacial interactions. Chem. Mater. 22, 4700–4711 (2010)Google Scholar
  90. 90.
    Scott, G.D., Palacios, J.J., Natelson, D.: Anomalous transport and possible phase transition in palladium nanojunctions. ACS Nano 4, 2831–2837 (2010)Google Scholar
  91. 91.
    Tsivadze, A.Y., Ionova, G.V., Mikhalko, V.K.: Nanochemistry and supramolecular chemistry of actinides and lanthanides: problems and prospects. Prot. Metals Phys. Chem. Surf. 46, 149–169 (2010)Google Scholar
  92. 92.
    Yang, K., Zhu, L., Xing, B.: Sorption of phenanthrene by nanosized alumina coated with sequentially extracted humic acids. Environ. Sci. Pollut. Res. 17, 410–419 (2010)Google Scholar
  93. 93.
    Ossler, F., Canton, S.E., Larsson, J.: X-ray scattering studies of the generation of carbon nanoparticles in flames and their transition from gas phase to condensed phase. Carbon 47, 3498–3507 (2009)Google Scholar
  94. 94.
    Emmerich, H.: Phase-field modelling for metals and colloids and nucleation therein—an overview. J. Phys. Condens. Matter 21 (2009)Google Scholar
  95. 95.
    Barton, G., Carugno, G., Dodonov, V., Man’Ko, M.: International workshop 60 years of the Casimir effect. J. Phys. Conf. Ser. 161 (2009)Google Scholar
  96. 96.
    Ziolkowski, L.A., Druffel, E.R.M.: The feasibility of isolation and detection of fullerenes and carbon nanotubes using the benzene polycarboxylic acid method. Mar. Pollut. Bull. 59, 213–218 (2009)Google Scholar
  97. 97.
    Tang, P., Hao, J.: Formation mechanism and morphology modulation of honeycomb hybrid films made of polyoxometalates/surfactants at the air/water interface. J. Colloid Interf. Sci. 333, 1–5 (2009)Google Scholar
  98. 98.
    Crisan, O., Von Haeften, K., Ellis, A.M., Binns, C.: Novel gas-stabilized iron clusters: synthesis, structure and magnetic behaviour. Nanotechnology 19 (2008)Google Scholar
  99. 99.
    Park, K.H., Lee, S.Q., Kim, E.K., Moon, S.E., Cho, Y.H., Gokarna, A., Jin, L.H., Kim, S., Cho, W., Lee, Y.I.: Bio-information scanning technology using an optical pick-up head. Ultramicroscopy 108, 1319–1324 (2008)Google Scholar
  100. 100.
    Wehbe, N., Heile, A., Arlinghaus, H.F., Bertrand, P., Delcorte, A.: Effects of metal nanoparticles on the secondary ion yields of a model alkane molecule upon atomic and polyatomic projectiles in secondary ion mass spectrometry. Anal. Chem. 80, 6235–6244 (2008)Google Scholar
  101. 101.
    Carazzone, C., Raml, R., Pergantis, S.A.: Nanoelectrospray ion mobility spectrometry online with inductively coupled plasma-mass spectrometry for sizing large proteins, DNA, and nanoparticles. Anal. Chem. 80, 5812–5818 (2008)Google Scholar
  102. 102.
    Chang, H., Kao, M.J., Chang, Y.C., Huang, D.Y.: A new approach of synthesis of Al2O3 nanofluid. In: Materials science forum, pp. 155–161. (2008)Google Scholar
  103. 103.
    Ibaseta, N., Biscans, B.: Fractal dimension of fumed silica: comparison of light scattering and electron microscope methods. Powder Technol. 203, 206–210 (2010)Google Scholar
  104. 104.
    Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z., Mano, J.F.: Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos. Sci. Technol. 70, 1764–1776 (2010)Google Scholar
  105. 105.
    Boccaccini, A.R., Keim, S., Ma, R., Li, Y., Zhitomirsky, I.: Electrophoretic deposition of biomaterials. J. R. Soc. Interf. 7, S581–S613 (2010)Google Scholar
  106. 106.
    Tabachenko, A.N., Martsunova, L.A., Skosyrskii, A.B., Belov, N.N., Yugov, N.T., Afanas’Eva, S.A.: Design of nanostructured cermet materials high-speed impact conditions. Theor. Found. Chem. Eng. 44, 723–728 (2010)Google Scholar
  107. 107.
    Duraiswamy, S., Khan, S.A.: Plasmonic nanoshell synthesis in microfluidic composite foams. Nano Lett. 10, 3757–3763 (2010)Google Scholar
  108. 108.
    Xin, Y., Wang, Z., Qi, Y., Zhang, Z., Zhang, S.: Synthesis of rare earth (Pr, Nd, Sm, Eu and Gd) hydroxide and oxide nanorods (nanobundles) by a widely applicable precipitation route. J. Alloys Compd. 507, 105–111 (2010)Google Scholar
  109. 109.
    Zhou, W., Liu, H., Boughton, R.I., Du, G., Lin, J., Wang, J., Liu, D.: One-dimensional single-crystalline Ti–O based nanostructures: properties, synthesis, modifications and applications. J. Mater. Chem. 20, 5993–6008 (2010)Google Scholar
  110. 110.
    Yang, L.Y., Feng, G.P., Wang, T.X.: Green synthesis of ZnO2 nanoparticles from hydrozincite and hydrogen peroxide at room temperature. Mater. Lett. 64, 1647–1649 (2010)Google Scholar
  111. 111.
    Mirzamohammadi, S., Aliov, M.K., Sabur, A.R., Hassanzadeh-Tabrizi, A.: Study of wear resistance and nanostructure of tertiary Al2O3/Y2O3/CNT pulsed electrodeposited ni-based nanocomposite. Mater. Sci. 46, 76–86 (2010)Google Scholar
  112. 112.
    Wu, C., Xie, Y.: Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving. Energy Environ. Sci. 3, 1191–1206 (2010)Google Scholar
  113. 113.
    Sekhon, B.S.: Food nanotechnology—an overview. Nanotechnol. Sci. Appl. pp. 1–15 (2010)Google Scholar
  114. 114.
    Wögerer, C., Almansa, A., Rempp, H.: IPMMAN—improvement of industrial production integrating macro-, micro- and nanotechnologies. In: VDI Berichte, pp. 125–128. (2006)Google Scholar
  115. 115.
    Cayton, R.H.: Nanoparticle composites for coating applications. Paint Coat. Ind. 20, 48–54 (2004)Google Scholar
  116. 116.
    Koepenick, M.: Nano invasion: dream or reality? [La nano invasion: Reve ou realite?]. 15, 16–19 (2004)Google Scholar
  117. 117.
    Lekka, M., Zanella, C., Klorikowska, A., Bonora, P.L.: Scaling-up of the electrodeposition process of nano-composite coating for corrosion and wear protection. Electrochim. Acta 55, 7876–7883 (2010)Google Scholar
  118. 118.
    Tambe, S.P., Naik, R.S., Singh, S.K., Patri, M., Kumar, D.: Studies on effect of nanoclay on the properties of thermally sprayable EVA and EVAI coatings. Prog. Org. Coat. 65, 484–489 (2009)Google Scholar
  119. 119.
    Ahmad, Z., Ahsan, M.: Corrosion studies on the plasma-sprayed nanostructured titanium dioxide coatings. Anti Corros. Methods Mater. 56, 187–195 (2009)Google Scholar
  120. 120.
    Wielage, B., Lampke, T., Zacher, M., Dietrich, D.: Electroplated nickel composites with micron- to nano-sized particles. Key Eng. Mater. 283–309 (2008)Google Scholar
  121. 121.
    Kim, G.E., Walker, J.: Successful application of nanostructured titanium dioxide coating for high-pressure acid-leach application. J. Therm. Spray Technol. 16, 34–39 (2007)Google Scholar
  122. 122.
    Soucek, M.D., Zong, Z., Johnson, A.J.: Inorganic/organic nanocomposite coatings: the next step in coating performance. J. Coat. Technol. Res. 3, 133–140 (2006)Google Scholar
  123. 123.
    Guilemany, J.M., Dosta, S., Nin, J., Miguel, J.R.: Study of the properties of WC–Co nanostructured coatings sprayed by high-velocity oxyfuel. J. Therm. Spray Technol. 14, 405–413 (2005)Google Scholar
  124. 124.
    Lekka, M., Kouloumbi, N., Gajo, M., Bonora, P.L.: Corrosion and wear resistant electrodeposited composite coatings. Electrochim. Acta 50, 4551–4556 (2005)Google Scholar
  125. 125.
    Yuan, J., Zhou, S., Gu, G., Wu, L.: Effect of the particle size of nanosilica on the performance of epoxy/silica composite coatings. J. Mater. Sci. 40, 3927–3932 (2005)Google Scholar
  126. 126.
    Brooman, E.W.: Wear behavior of environmentally acceptable alternatives to chromium coatings: nickel-based candidates. Met. Finish. 102, 75–82 (2004)Google Scholar
  127. 127.
    Fuerbeth, W., Nguyen, H.Q., Schuetze, M.: Development of new corrosion resistant coatings based on chemical nanotechnology. J. Corros. Sci. Eng. 6 (2003)Google Scholar
  128. 128.
    Nguyen, H.Q., Fiirbeth, W., Schiitze, M.: Nano-enamel: a new way to produce glass-like protective coatings for metals. Mater. Corros. 53, 772–782 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Materials Engineering DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations