Size Dependency in Nanostructures

  • Mahmood AliofkhazraeiEmail author
Part of the Engineering Materials book series (ENG.MAT.)


This chapter discusses about size dependency in nanostructures with focus on its usage for nanocoatings. It starts from nanocomposites and goes through different applications of nanostructured films. Size effect in nanometric scale has been compared with larger scales by some examples. Detailed discussions about some methods with enough examples were presented in this chapter. Different parts of this chapter include discussions about nanocomposite films, electrochemistry role in production of nano-coatings, size effect in mechanical and corrosion properties, functional applications of nanocoatings and surface engineering share in key industry sections.


Composite Coating Titanium Nitride Nanocomposite Coating Multilayer Coating Chemical Vapor Deposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arranz, M.A., Colino, J.M.: Nanoscale ripple formation in Co/Si(100) thin films with Ar+ beam etching. J. Phys. Conf. Ser. 200, 1–4 (2010)Google Scholar
  2. 2.
    Aubry, A., Lei, D.Y., Maier, S.A., Pendry, J.B.: Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder. Phys. Rev. B Conden. Matter Mater. Phys. 82 (2010)Google Scholar
  3. 3.
    De Arruda Rodrigues, C., De Tacconi, N.R., Chanmanee, W., Rajeshwar, K.: Cathodic electrosynthesis of niobium oxide one-dimensional nanostructures with tailored dimensions. Electrochem. Solid State Lett. 13, B69–B72 (2010)Google Scholar
  4. 4.
    Krzeminski, M., Molinari, M., Troyon, M., Coqueret, X.: Characterization by atomic force microscopy of the nanoheterogeneities produced by the radiation-induced cross-linking polymerization of aromatic diacrylates. Macromolecules 43, 8121–8127 (2010)Google Scholar
  5. 5.
    Liang, H.W., Liu, S., Yu, S.H.: Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates. Adv. Mater. 22, 3925–3937 (2010)Google Scholar
  6. 6.
    Liang, S., Fang, X., Xia, T.L., Qing, Y., Guo, Z.X.: Self-assembled magnetic nanohead-FeSi nanowire epitaxial heterojunctions by chemical vapor deposition. J. Phys. Chem. C 114, 16187–16190 (2010)Google Scholar
  7. 7.
    Rinaldi, A., Correa-Duarte, M.A., Salgueirino-Maceira, V., Licoccia, S., Traversa, E., Dāvila-Ibāãez, A.B., Peralta, P., Sieradzki, K.: Elastic properties of hard cobalt boride composite nanoparticles. Acta Materialia 58, 6474–6486 (2010)Google Scholar
  8. 8.
    Xiao, X., Sachdev, A.K., Haddad, D., Li, Y., Sheldon, B.W., Soni, S.K.: Stress-induced Sn nanowires from Si–Sn nanocomposite coatings. Appl. Phys. Lett. 97 (2010)Google Scholar
  9. 9.
    Enz, T., Sieger, H., Fasel, C., Hahn, H.: Nanocomposite formation through thermal decomposition of mixed samarium and magnesium citrate-derived gels formed by spray pyrolysis. J. Am. Ceram. Soc. 91, 3066–3073 (2008)Google Scholar
  10. 10.
    Bobzin, K., Ernst, F., Zwick, J., Schlaefer, T., Cook, D., Nassenstein, K., Schwenk, A., Schreiber, F., Wenz, T., Flores, G., Hahn, M.: Coating bores of light metal engine blocks with a nanocomposite material using the plasma transferred wire arc thermal spray process. J. Therm. Spray Tech. 17, 344–351 (2008)Google Scholar
  11. 11.
    Gregory, O.J., Wnuk, S., Downey, M.A., Wnuk, V.: Improved thermal spray instrumentation using intermediate nanocomposite coatings. In: Proceedings of the International Instrumentation Symposium, pp. 223–233. (2004)Google Scholar
  12. 12.
    Gregory, Q.J., Wnuk, S., Downey, M.A., Wnuk, V.: Improved thermal spray instrumentation using intermediate nanocomposite coatings. In: Technical Papers of ISA, pp. 223–233. (2004)Google Scholar
  13. 13.
    Dey, A., Mukhopadhyay, A.K., Gangadharan, S., Sinha, M.K., Basu, D., Bandyopadhyay, N.R.: Nanoindentation study of microplasma sprayed hydroxyapatite coating. Ceram. Int. 35, 2295–2304 (2009)Google Scholar
  14. 14.
    Grigore, E., Ruset, C., Li, X., Dong, H.: The influence of carbon content on the characteristics of V–C–N coatings deposited by combined magnetron sputtering and ion implantation (CMSII). Surf. Coat. Technol. 204, 2006–2009 (2010)Google Scholar
  15. 15.
    Fox-Rabinovich, G.S., Yamamoto, K., Kovalev, A.I., Veldhuis, S.C., Ning, L., Shuster, L.S., Elfizy, A.: Wear behavior of adaptive nano-multilayered TiAlCrN/NbN coatings under dry high performance machining conditions. Surf. Coat. Technol. 202, 2015–2022 (2008)Google Scholar
  16. 16.
    Ii, J., Kim, I., Dost, S.: Texture evolution in TiN, TaN and W2N thin films, In: Materials Science Forum, pp. 1591–1596. (2002)Google Scholar
  17. 17.
    Solodukhin, I.A., Khodasevich, V.V., Uglov, V.V., Brizuela, M., Oate, J.I.: The use of preliminary ion implantation and heating on the substrate for modifying TiN coating properties and TiN/substrate interface. Surf. Coat. Technol. 142–144, 1144–1147 (2001)Google Scholar
  18. 18.
    Ji, H.B., Xia, L.F., Ma, X.X., Sun, Y., Sun, M.R.: Comparison of surface properties of Ti–6Al–4V coated with titanium nitride, TiN+TiC+Ti(C,N)/DLC, TiN/DLC and TiC/DLC films by plasma-based ion implantation. Acta Metallurgica Sinica (English Letters) 13, 967–973 (2000)Google Scholar
  19. 19.
    Olszyna, A.R., Biesiada, K., Smolik, J.: Super-hard carbon layers produced on the Al2O3/ Al2O3+x%SiC (whiskers) ceramic cutting edges. Plasma Process. Polym. 4, S278–S281 (2007)Google Scholar
  20. 20.
    Guo, Y., Ma, S., Xu, K.: Effects of carbon content and annealing temperature on the microstructure and hardness of super hard Ti–Si–C–N nanocomposite coatings prepared by pulsed d.c. PCVD. Surf. Coat. Technol. 201, 5240–5243 (2007)Google Scholar
  21. 21.
    Reiße, G., Weißmantel, S., Rost, D.: Preparation of super-hard coatings by pulsed laser deposition. Appl. Phys. A Mater. Sci. Process. 79, 1275–1278 (2004)Google Scholar
  22. 22.
    Zhou, J., Walleser, J.K., Meacham, B.E., Branagan, D.J.: Novel in situ transformable coating for elevated-temperature applications. J. Therm. Spray Tech. 19, 950–957 (2010)Google Scholar
  23. 23.
    Tsotsos, C., Baker, M.A., Polychronopoulou, K., Gibson, P.N., Giannakopoulos, K., Polycarpou, A.A., Böbel, K., Rebholz, C.: Structure and mechanical properties of low temperature magnetron sputtered nanocrystalline (nc–)Ti(N,C)/amorphous diamond like carbon (a–C:H) coatings. Thin Solid Films 519, 24–30 (2010)Google Scholar
  24. 24.
    Abad, M.D., Muñoz-Márquez, M.A., El Mrabet, S., Justo, A., Sánchez-López, J.C.: Tailored synthesis of nanostructured WC/a–C coatings by dual magnetron sputtering. Surf. Coatings Technol. 204, 3490–3500 (2010)Google Scholar
  25. 25.
    Garcia-Torres, J., Gómez, E., Vallés, E.: Modification of magnetic and structural properties of Co and Co–Ag electrodeposits by sulphur incorporation. Mater. Chem. Phys. 122, 463–469 (2010)Google Scholar
  26. 26.
    Fabrizi, A., Cabibbo, M., Cecchini, R., Spigarelli, S., Paternoster, C., Haidopoulo, M., Kiryukhantsev-Korneev, P.V.: Thermal stability of nanostructured coatings. In: Materials Science Forum, pp. 1–22. (2010)Google Scholar
  27. 27.
    Wang, Y., Li, Z., Du, J., Wang, B.: Mechanical properties of the plasma-enhanced magnetron sputtering Si–C–N coatings. Appl. Surf. Sci. 257, 1–5 (2010)Google Scholar
  28. 28.
    McCrea, J.L.: Industrial implementation of nanostructured cobalt as an alternative to hard chrome. Surf. Eng. 26, 149–152 (2010)Google Scholar
  29. 29.
    Zhao, J., Peng, X., Wang, F.: Fabrication of a nitrided coating on a novel Ni–Cr nanocomposite with increased surface hardness. Mater. Res. Bull. 45, 420–424 (2010)Google Scholar
  30. 30.
    Abu Samra, H., Staedler, T., Aronov, I., Xia, J., Jia, C., Wenclawiak, B., Jiang, X.: Deposition and characterisation of nanocrystalline Mo2N/BN composite coatings by ECR plasma assisted CVD. Surf. Coat. Technol. 204, 1919–1924 (2010)Google Scholar
  31. 31.
    Weston, D.P., Harris, S.J., Capel, H., Ahmed, N., Shipway, P.H., Yellup, J.M.: Nanostructured Co–W coatings produced by electrodeposition to replace hard Cr on aerospace components. Trans. Inst. Met. Finish. 88, 47–56 (2010)Google Scholar
  32. 32.
    Maury, F., Douard, A., Delclos, S., Samelor, D., Tendero, C.: Multilayer chromium based coatings grown by atmospheric pressure direct liquid injection CVD. Surf. Coatings Technol. 204, 983–987 (2009)Google Scholar
  33. 33.
    Kumar, A., Kaur, D.: Nanoindentation and corrosion studies of TiN/NiTi thin films for biomedical applications. Surf. Coatings Technol. 204, 1132–1136 (2009)Google Scholar
  34. 34.
    Ziebert, C., Albers, U., Stüber, M., Ulrich, S.: Constitution and mechanical properties of nanocrystalline reactive magnetron sputtered V–Al–C–N hard coatings as a function of the carbon content. Plasma Process. Polym. 6, S560–S565 (2009)Google Scholar
  35. 35.
    Mofidi, S.H.H., Aliofkhazraei, M., Rouhaghdam, A.S., Ghobadi, E., Mohsenian, E.: Improvement of surface characteristics by electroplating hard chromium coating post treated by nanocrystalline plasma electrolytic carbonitriding. Plasma Process. Polym. 6, S297–S301 (2009)Google Scholar
  36. 36.
    Tsyntsaru, N., Dikusar, A., Cesiulis, H., Celis, J.P., Bobanova, Z., Sidel’Nikova, S., Belevskii, S., Yapontseva, Y., Bersirova, O., Kublanovskii, V.: Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys. Powder Metall. Met. Ceram. 48, 419–428 (2009)Google Scholar
  37. 37.
    Fox-Rabinovich, G.S., Kovalev, A.I., Aguirre, M.H., Beake, B.D., Yamamoto, K., Veldhuis, S.C., Endrino, J.L., Wainstein, D.L., Rashkovskiy, A.Y.: Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials. Surf. Coat. Technol. 204, 489–496 (2009)Google Scholar
  38. 38.
    Krause, M., Bedel, L., Taupeau, A., Kreissig, U., Munnik, F., Abrasonis, G., Kolitsch, A., Radnoczi, G., Czigāny, Z., Vanhulsel, A.: Structural and mechanical characterization of BCxNy thin films deposited by pulsed reactive magnetron sputtering. Thin Solid Films 518, 77–83 (2009)Google Scholar
  39. 39.
    Zeng, Z., Zhou, Y., Zhang, B., Sun, Y., Zhang, J.: Designed fabrication of hard Cr{single bond}Cr2O3{single bond}Cr7C3 nanocomposite coatings for anti-wear application. Acta Mater. 57, 5342–5347 (2009)Google Scholar
  40. 40.
    Stueber, M., Holleck, H., Leiste, H., Seemann, K., Ulrich, S., Ziebert, C.: Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. Alloys Compd. 483, 321–333 (2009)Google Scholar
  41. 41.
    Boonyongmaneerat, Y., Saengkiettiyut, K., Saenapitak, S., Sangsuk, S.: Effects of WC addition on structure and hardness of electrodeposited Ni–W. Surf. Coat. Technol. 203, 3590–3594 (2009)Google Scholar
  42. 42.
    Gupta, G., Mondal, K., Balasubramaniam, R.: In situ nanocrystalline Fe–Si coating by mechanical alloying. J. Alloys Compd. 482, 118–122 (2009)Google Scholar
  43. 43.
    Bobanova, Z.I., Dikusar, A.I., Cesiulis, H., Celis, J.P., Tsyntsaru, N.I., Prosycevas, I.: Micromechanical and tribological properties of nanocrystalline coatings of iron–tungsten alloys electrodeposited from citrate-ammonia solutions. Russ. J. Electrochem. 45, 895–901 (2009)Google Scholar
  44. 44.
    Vojtĕch, D.: Properties of hard Ni–P–Al2O3 and Ni–P–SiC coatings on al-aased casting alloys. Mater. Manufact. Process. 24, 754–757 (2009)Google Scholar
  45. 45.
    Jung, A., Natter, H., Hempelmann, R., Lach, E.: Nanocrystalline alumina dispersed in nanocrystalline nickel: enhanced mechanical properties. J. Mater. Sci. 44, 2725–2735 (2009)Google Scholar
  46. 46.
    Mishra, S.K.: Nano and nanocomposite superhard coatings of silicon carbonitride and titanium diboride by magnetron sputtering. Int. J. Appl. Ceramic Technol. 6, 345–354 (2009)Google Scholar
  47. 47.
    Krella, A., Czyzniewski, A.: Cavitation resistance of Cr–N coatings deposited on austenitic stainless steel at various temperatures. Wear 266, 800–809 (2009)Google Scholar
  48. 48.
    Aliofkhazraei, M., Sabour Rouhaghdam, A., Heydarzadeh, A., Elmkhah, H.: Nanostructured layer formed on CP–Ti by plasma electrolysis (effect of voltage and duty cycle of cathodic/anodic direction). Mater. Chem. Phys. 113, 607–612 (2009)Google Scholar
  49. 49.
    Ranjith, B., Paruthimal Kalaignan, G.: Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath. Appl. Surf. Sci. 257, 42–47 (2010)Google Scholar
  50. 50.
    Guo, Y., Wang, Q.: Facile approach in fabricating superhydrophobic coatings from silica-based nanocomposite. Appl. Surf. Sci. 257, 33–36 (2010)Google Scholar
  51. 51.
    Antonello, A., Brusatin, G., Guglielmi, M., Martucci, A., Bello, V., Mattei, G., Mazzoldi, P., Pellegrini, G.: Hybrid organic-inorganic ZnS–loaded nanocomposite films for stable optical coatings. Thin Solid Films 518, 6781–6786 (2010)Google Scholar
  52. 52.
    Moskalewicz, T., Wendler, B., Czyrska-Filemonowicz, A.: Microstructural characterisation of nanocomposite nc–MeC/a–C coatings on oxygen hardened Ti–6Al–4V alloy. Mater. Charact. 61, 959–968 (2010)Google Scholar
  53. 53.
    Liu, X.W., Devaraju, M.K., Yin, S., Sato, T.: Calcium-doped ceria/titanate tabular functional nanocomposite by layer-by-layer coating method. J. Solid State Chem. 183, 1545–1549 (2010)Google Scholar
  54. 54.
    Heidarian, M., Shishesaz, M.R., Kassiriha, S.M., Nematollahi, M.: Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultrasonication assisted process. Prog. Org. Coat. 68, 180–188 (2010)Google Scholar
  55. 55.
    Sharif, M., Faghihi-Sani, M.A., Golestani-Fard, F., Saberi, A., Soltani, A.K.: Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction. J. Alloys Compd. 500, 74–77 (2010)Google Scholar
  56. 56.
    Mège-Revil, A., Steyer, P., Cardinal, S., Thollet, G., Esnouf, C., Jacquot, P., Stauder, B.: Correlation between thermal fatigue and thermomechanical properties during the oxidation of multilayered TiSiN nanocomposite coatings synthesized by a hybrid physical/chemical vapour deposition process. Thin Solid Films 518, 5932–5937 (2010)Google Scholar
  57. 57.
    Vartiainen, J., Tuominen, M., Nättinen, K.: Bio-hybrid nanocomposite coatings from sonicated chitosan and nanoclay. J. Appl. Polymer Sci. 116, 3638–3647 (2010)Google Scholar
  58. 58.
    Guo, Y., Jiang, D., Zhang, X., Zhang, Z., Wang, Q.: Room temperature synthesis of water-repellent polystyrene nanocomposite coating. Appl. Surf. Sci. 256, 7088–7090 (2010)Google Scholar
  59. 59.
    Wo, P.C., Munroe, P.R., Zhou, Z.F., Li, K.Y., Xie, Z.H.: Effects of TiN sublayers on the response of TiSiN nanocomposite coatings to nanoidentation and scratching contacts. Mater. Sci. Eng. A 527, 4447–4457 (2010)Google Scholar
  60. 60.
    Abdul Samad, M., Sinha, S.K.: Nanocomposite UHMWPE-CNT polymer coatings for boundary lubrication on aluminium substrates. Tribol. Lett. 38, 301–311 (2010)Google Scholar
  61. 61.
    Mulligan, C.P., Blanchet, T.A., Gall, D.: CrN–Ag nanocomposite coatings: High-temperature tribological response. Wear 269, 125–131 (2010)Google Scholar
  62. 62.
    Bahadormanesh, B., Dolati, A.: The kinetics of Ni–Co/SiC composite coatings electrodeposition. J. Alloys Compd. 504, 514–518 (2010)Google Scholar
  63. 63.
    Fan, Y., Chen, D.: Control-steps and influence factors of SiO2 electrodeposition process with Zn coatings. In: Advanced Materials Research, pp. 1416–1419. (2010)Google Scholar
  64. 64.
    Rudnik, E.: Influence of Cs+ ions on codeposition of SiC particles with Ni–Co alloy. Trans. Inst. Metal Finish. 87, 239–245 (2009)Google Scholar
  65. 65.
    Liu, H., Chen, W.: Electrodeposited Ni–Al composite coatings with high Al content by sediment co-deposition. Surf. Coat. Technol. 191, 341–350 (2005)Google Scholar
  66. 66.
    Hu, F., Chan, K.C.: Electrocodeposition behavior of Ni–SiC composite under different shaped waveforms. Appl. Surf. Sci. 233, 163–171 (2004)Google Scholar
  67. 67.
    Ramesh Bapu, G.N.K., Thiruchelvam, T.: Validity of adsorption mechanism for electrodeposited zinc composites. Bull. Electrochem. 17, 405–408 (2001)Google Scholar
  68. 68.
    Chang, Y.C., Chang, Y.Y., Lin, C.I.: Process aspects of the electrolytic codeposition of molybdenum disulfide with nickel. Electrochim. Acta 43, 315–324 (1998)Google Scholar
  69. 69.
    Mirzamohammadi, S., Kiarasi, R., Aliov, M.K., Sabur, A.R., Hassanzadeh-Tabrizi, A.: Study of corrosion resistance and nanostructure for tertiary Al2O3/Y2O3/CNT pulsed electrodeposited Ni based nanocomposite. Trans. Inst. Metal Finish. 88, 93–99 (2010)Google Scholar
  70. 70.
    Ulrich, S., Ye, J., Stüber, M., Ziebert, C.: Cubic boron nitride based metastable coatings and nanocomposites. Thin Solid Films 518, 1443–1450 (2009)Google Scholar
  71. 71.
    Popov, C., Bliznakov, S., Kulisch, W.: Influence of the substrate nature on the properties of nanocrystalline diamond films. Diam. Relat. Mater. 16, 740–743 (2007)Google Scholar
  72. 72.
    Perez-Mariano, J., Lau, K.H., Sanjurjo, A., Caro, J., Casellas, D., Colominas, C.: TiSiN nanocomposite coatings by chemical vapor deposition in a fluidized bed reactor at atmospheric pressure (AP/FBR-CVD). Surf. Coat. Technol. 201, 2217–2225 (2006)Google Scholar
  73. 73.
    Kulisch, W., Popov, C., Vorlicek, V., Gibson, P.N., Favaro, G.: Nanocrystalline diamond growth on different substrates. Thin Solid Films 515, 1005–1010 (2006)Google Scholar
  74. 74.
    Li, Y.S., Kiyono, H., Shimada, S., Lu, X., Hirose, A.: Mechanical and field emission properties of CGed Si(C,N) films synthesized by PECVD from HMDS precursor. Diam. Relat. Mater. 15, 1727–1731 (2006)Google Scholar
  75. 75.
    Lattemann, M., Sell, K., Ye, J., Persson, P.A.O., Ulrich, S.: Stress reduction in nanocomposite coatings consisting of hexagonal and cubic boron nitride. Surf. Coat. Technol. 200, 6459–6464 (2006)Google Scholar
  76. 76.
    Li, Y.S., Shimada, S., Kiyono, H., Hirose, A.: Synthesis of Ti–Al–Si–N nanocomposite films using liquid injection PECVD from alkoxide precursors. Acta Mater. 54, 2041–2048 (2006)Google Scholar
  77. 77.
    Winkelmann, A., Cairney, J.M., Hoffman, M.J., Martin, P.J., Bendavid, A.: Zr–Si–N films fabricated using hybrid cathodic arc and chemical vapour deposition: structure vs. properties. Surf. Coat. Technol. 200, 4213–4219 (2006)Google Scholar
  78. 78.
    Yoon, J.K., Kim, G.H., Han, J.H., Shon, I.J., Doh, J.M., Hong, K.T.: Low-temperature cyclic oxidation behavior of MoSi2/Si3N4 nanocomposite coating formed on Mo substrate at 773 K. Surf. Coat. Technol. 200, 2537–2546 (2005)Google Scholar
  79. 79.
    Polini, R., Amar, M., Ahmed, W., Kumashiro, S., Sein, H., Colligon, J.S.: A study of diamond synthesis by hot filament chemical vapour deposition on nanocomposite coatings. Thin Solid Films 489, 116–121 (2005)Google Scholar
  80. 80.
    Aliofkhazraei, M., Rouhaghdam, A.S., Ghobadi, E., Mohsenian, E.: Electrodeposition and mechanical and corrosion resistance properties of tertiary Ni-W/Al2O3/CNT nanocomposite coatings. In: Advanced Materials Research, pp. 12–16. (2010)Google Scholar
  81. 81.
    Ciubotariu, A., Benea, L., Lakatos-Varsanyi, M., Dragan, V.: Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3–Ni nano composite coatings. Electrochim. Acta 53, 4557–4563 (2008)Google Scholar
  82. 82.
    de Hazan, Y., Werner, D., Z’Graggen, M., Groteklaes, M., Graule, T.: Homogeneous Ni–P/Al2O3 nanocomposite coatings from stable dispersions in electroless nickel baths. J. Colloid Interf. Sci. 328, 103–109 (2008)Google Scholar
  83. 83.
    Feng, Q., Li, T., Teng, H., Zhang, X., Zhang, Y., Liu, C., Jin, J.: Investigation on the corrosion and oxidation resistance of Ni–Al2O3 nano-composite coatings prepared by sediment co-deposition. Surf. Coat. Technol. 202, 4137–4144 (2008)Google Scholar
  84. 84.
    Feng, Q., Li, T., Yue, H., Bai, F., Qi, K., Jin, J.: Sediment co-deposition of nanostructured Ni-Al2O3 composite coatings. In: Key Engineering Materials, pp. 244–247. (2008)Google Scholar
  85. 85.
    Feng, Q., Li, T., Zhang, Z., Zhang, J., Liu, M., Jin, J.: Preparation of nanostructured Ni/Al2O3 composite coatings in high magnetic field. Surf. Coat. Technol. 201, 6247–6252 (2007)Google Scholar
  86. 86.
    Liu, Y., Ren, L., Yu, S., Han, Z.: Influence of current density on nano-Al2O3/Ni+Co bionic gradient composite coatings by electrodeposition. J. Univ. Sci. Technol. Beijing Min. Metallurg. Mater. (Eng Ed) 15, 633–637 (2008)Google Scholar
  87. 87.
    Liu, Y., Yu, S.R., Ren, L.Q., Han, Z.W.: Nano-Al2O3/Ni + Co gradient composite coating by electrodeposition. Jilin Daxue Xuebao (Gongxueban)/J. Jilin Univ. (Engineering and Technology Edition) 39, 154–158 (2009)Google Scholar
  88. 88.
    Mirzamohammadi, S., Aliov, M.K., Sabur, A.R., Hassanzadeh-Tabrizi, A.: Study of wear resistance and nanostructure of tertiary Al2O3/Y2O3/CNT pulsed electrodeposited ni-based nanocomposite. Mater. Sci. 46, 76–86 (2010)Google Scholar
  89. 89.
    Wu, B., Xu, B.S., Zhang, B., Lü, Y.H.: Preparation and properties of Ni/nano-Al2O3 composite coatings by automatic brush plating. Surf. Coat. Technol. 201, 6933–6939 (2007)Google Scholar
  90. 90.
    Zhang, H., Zhou, Y., Hu, H.: Preparation and oxidation performance of an-Al2O3-modified chromizing coating. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Mater. Eng. 38, 1655–1658 (2009)Google Scholar
  91. 91.
    Zheng, H.Y., An, M.Z.: Electrodeposition of Zn–Ni–Al2O3 nanocomposite coatings under ultrasound conditions. J. Alloys Compd. 459, 548–552 (2008)Google Scholar
  92. 92.
    Zheng, H.Y., An, M.Z., Lu, J.F.: Surface characterization of the Zn–Ni–Al2O3 nanocomposite coating fabricated under ultrasound condition. Appl. Surf. Sci. 254, 1644–1650 (2008)Google Scholar
  93. 93.
    Zhou, Y.B., Chen, H.Y., Zhang, H.J., Wang, Y.D.: Oxidation of Al2O3-dispersion chromizing coating by pack-cementation at 800°C. Trans. Nonferrous Metals Soc. China (English Edition) 18, 598–602 (2008)Google Scholar
  94. 94.
    Wang, H., Zuo, D., Chen, G., Sun, G., Li, X., Cheng, X.: Hot corrosion behaviour of low Al NiCoCrAlY cladded coatings reinforced by nano-particles on a Ni-base super alloy. Corros. Sci. 52, 3561–3567 (2010)Google Scholar
  95. 95.
    Barshilia, H.C., Acharya, S., Ghosh, M., Suresh, T.N., Rajam, K.S., Konchady, M.S., Pai, D.M., Sankar, J.: Performance evaluation of TiAlCrYN nanocomposite coatings deposited using four-cathode reactive unbalanced pulsed direct current magnetron sputtering system. Vacuum 85, 411–420 (2010)Google Scholar
  96. 96.
    Chatterjee, S., Shariff, S.M., Padmanabham, G., Majumdar, J.D., Choudhury, A.R.: Study on the effect of laser post-treatment on the properties of nanostructured Al2O3–TiB2–TiN based coatings developed by combined SHS and laser surface alloying. Surf. Coat. Technol. 205, 131–138 (2010)Google Scholar
  97. 97.
    Tang, F., Alam, T., Moody, M.P., Gault, B., Cairney, J.M.: Challenges associated with the characterisation of nanocrystalline materials using atom probe tomography. In: Materials Science Forum, pp. 2366–2369. (2010)Google Scholar
  98. 98.
    Wang, H., Zuo, D., Yan, J., Huang, M., Li, X.: Effects of nanometer Al2O3 particles on oxidation behaviors of laser cladding low Al NiCoCrAlY coatings. Oxid. Met. 74, 49–60 (2010)Google Scholar
  99. 99.
    Masanta, M., Ganesh, P., Kaul, R., Roy Choudhury, A.: Microstructure and mechanical properties of TiB2–TiC–Al2O3–SiC composite coatings developed by combined SHS, sol-gel and laser technology. Surf. Coat. Technol. 204, 3471–3480 (2010)Google Scholar
  100. 100.
    Lu, H., Zhang, W., Zhang, R., Xu, H., Wang, H., Chen, D., Yang, D.: Preparation of Fe coating Al2O3 nanometer composite powder and its mechanical properties after hot press sintering. Preparation of Fe coating Al2O3 nanometer composite powder and its mechanical properties after hot press sintering. In: Advanced Materials Research, pp. 16–19. (2010)Google Scholar
  101. 101.
    Gao, J., He, Y., Wang, D.: Fabrication and high temperature oxidation resistance of ZrO2/Al2O3 micro-laminated coatings on stainless steel. Mater. Chem. Phys. 123, 731–736 (2010)Google Scholar
  102. 102.
    Olszōwka-Myalska, A., Myalski, J., Botor-Probierz, A.: Microstructural characteristics of an AZ91 matrix-glassy carbon particle composite. Adv. Eng. Mater. 12, 609–616 (2010)Google Scholar
  103. 103.
    Wang, L., Wan, S., Wang, S.C., Wood, R.J.K., Xue, Q.J.: Gradient DLC-based nanocomposite coatings as a solution to improve tribological performance of aluminum alloy. Tribol. Lett. 38, 155–160 (2010)Google Scholar
  104. 104.
    Yin, B., Liu, G., Zhou, H., Chen, J., Yan, F.: Microstructures and properties of plasma sprayed FeAl/CeO2/ZrO2 nano-composite coating. Appl. Surf. Sci. 256, 4176–4184 (2010)Google Scholar
  105. 105.
    Han, Y., Wu, G., Li, H., Wang, M., Chen, H.: Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing. Nanotechnology 21 (2010)Google Scholar
  106. 106.
    Labille, J., Feng, J., Botta, C., Borschneck, D., Sammut, M., Cabie, M., Auffan, M., Rose, J., Bottero, J.Y.: Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ. Pollut. 158, 3482–3489 (2010)Google Scholar
  107. 107.
    Lu, Z., Ren, M., Yin, H., Wang, A., Ge, C., Zhang, Y., Yu, L., Jiang, T.: Preparation of nanosized anatase TiO2-coated kaolin composites and their pigmentary properties. Powder Technol. 196, 122–125 (2009)Google Scholar
  108. 108.
    Dinh, N.N., Chi, L.H., Long, N.T., Thuy, T.T.C., Trung, T.Q., Kim, H.K.: Preparation and characterization of nanostructured composite films for organic light emitting diodes. J. Phys. Conf. Ser. 187 (2009)Google Scholar
  109. 109.
    Dinh, N.N., Chi, L.H., Chung Thuy, T.T., Trung, T.Q., Truong, V.V.: Enhancement of current-voltage characteristics of multilayer organic light emitting diodes by using nanostructured composite films. J. Appl. Phys. 105 (2009)Google Scholar
  110. 110.
    Yang, S.M., Chang, Y.Y., Lin, D.Y., Wang, D.Y., Wu, W.: Thermal stability of TiAlN and nanocomposite TiAlSiN thin films. J. Nanosci. Nanotechnol. 9, 1108–1112 (2009)Google Scholar
  111. 111.
    Dinh, N.N., Chi, L.H., Thuy, T.T.C., Thanh, D.V., Nguyen, T.P.: Study of nanostructured polymeric composites and hybrid layers used for light-emitting diodes. J. Korean Phys. Soc. 53, 802–805 (2008)Google Scholar
  112. 112.
    Oliveira, J.C., Manaia, A., Cavaleiro, A.: Hard amorphous Ti–Al–N coatings deposited by sputtering. Thin Solid Films 516, 5032–5038 (2008)Google Scholar
  113. 113.
    Abdel Aal, A.: Hard and corrosion resistant nanocomposite coating for Al alloy. Mater. Sci. Eng. A 474, 181–187 (2008)Google Scholar
  114. 114.
    Zhai, C.S., Wang, J., Li, F., Tao, J.C., Yang, Y., Sun, B.D.: Thermal shock properties and failure mechanism of plasma sprayed Al2O3/TiO2 nanocomposite coatings. Ceram. Int. 31, 817–824 (2005)Google Scholar
  115. 115.
    Parlinska-Wojtan, M., Karimi, A., Coddet, O., Cselle, T., Morstein, M.: Characterization of thermally treated TiAlSiN coatings by TEM and nanoindentation. Surf. Coat. Technol. 188–189, 344–350 (2004)Google Scholar
  116. 116.
    Zahmatkesh, B., Enayati, M.H.: A novel approach for development of surface nanocomposite by friction stir processing. Mater. Sci. Eng. A 527, 6734–6740 (2010)Google Scholar
  117. 117.
    Pourhosseini, J., Zakeri, M., Rahimipour, M.R., Salahi, E., Pourhosseini, G.R.: Preparation of FeAl–Al2O3 nanocomposite via mechanical alloying and subsequent annealing. Mater. Sci. Technol. 26, 1132–1136 (2010)Google Scholar
  118. 118.
    Zhitomirsky, V.N., Kim, S.K., Burstein, L., Boxman, R.L.: X-ray photoelectron spectroscopy of nano-multilayered Zr–O/Al–O coatings deposited by cathodic vacuum arc plasma. Appl. Surf. Sci. 256, 6246–6253 (2010)Google Scholar
  119. 119.
    Lv, H., Zhao, W., An, Q., Nie, P., Wang, J., Chu, P.K.: Nanomechanical properties and microstructure of ZrO2/Al2O3 plasma sprayed coatings. Mater. Sci. Eng. A 518, 185–189 (2009)Google Scholar
  120. 120.
    Chen, C.H., Li, H.Y., Chien, C.Y., Yen, F.S., Chen, H.Y., Lin, J.M.: Preparation and characterization of α±Al2O3/Nylon 6 nanocomposite masterbatches. J. Appl. Polym. Sci. 112, 1063–1069 (2009)Google Scholar
  121. 121.
    Kulkarni, T., Wang, H.Z., Basu, S.N., Sarin, V.K.: Phase transformations in mullite-based nanocomposites. Int. J. Refract Metal Hard Mater. 27, 465–471 (2009)Google Scholar
  122. 122.
    Stüber, M., Albers, U., Leiste, H., Seemann, K., Ziebert, C., Ulrich, S.: Magnetron sputtering of hard Cr–Al–N–O thin films. Surf. Coat. Technol. 203, 661–665 (2008)Google Scholar
  123. 123.
    Wang, S.C., Tseng, C.H.: Effects of Al2O3 nanoparticle on the microstructure and magnetic properties of Co/Al2O3 coatings prepared by composite plating. In: Advanced Materials Research, pp. 131–139. (2008)Google Scholar
  124. 124.
    Chang, Y.Y., Chang, C.P., Wang, D.Y., Yang, S.M., Wu, W.: High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. J. Alloys Compd. 461, 336–341 (2008)Google Scholar
  125. 125.
    Du, X., Xu, Y.: Formation of Al2O3–BaTiO3 nanocomposite oxide films on etched aluminum foil by sol-gel coating and anodizing. J. Sol Gel. Sci. Technol. 45, 57–61 (2008)Google Scholar
  126. 126.
    Balani, K., Bakshi, S.R., Chen, Y., Laha, T., Agarwal, A.: Role of powder treatment and carbon nanotube dispersion in the fracture toughening of plasma-sprayed aluminum oxide-carbon nanotube nanocomposite. J. Nanosci. Nanotechnol. 7, 3553–3562 (2007)Google Scholar
  127. 127.
    Hannula, S.P., Turunen, E., Keskinen, J., Varis, T., Fält, T., Gustafsson, T.E., Nowak, R.: Development of nanostructured Al2O3–Ni HVOF coatings. In: Key Engineering Materials, pp. 539–544. (2006)Google Scholar
  128. 128.
    Vida-Simiti, I., Jumate, N., Negrea, G., Sechel, N., Coman, C.: Structure of some composite materials for excessive wear applications. Metalurgia Int. 14, 137–140 (2009)Google Scholar
  129. 129.
    Lin, W.S., Qian, S.Q., Xu, M.M.: Wear behavior of electro-brush plating Nano-WC/PTFE-Ni composite coatings. Mocaxue Xuebao/Tribology 27, 442–446 (2007)Google Scholar
  130. 130.
    Chen, H., Xu, C., Qu, J., Hutchings, I.M., Shipway, P.H., Liu, J.: Sliding wear behaviour of laser clad coatings based upon a nickel-based self-fluxing alloy co-deposited with conventional and nanostructured tungsten carbide-cobalt hardmetals. Wear 259, 801–806 (2005)Google Scholar
  131. 131.
    Mangam, V., Bhattacharya, S., Das, K., Das, S.: Friction and wear behavior of Cu–CeO2 nanocomposite coatings synthesized by pulsed electrodeposition. Surf. Coat. Technol. 205, 801–805 (2010)Google Scholar
  132. 132.
    Zanella, C., Lekka, M., Bonora, P.L.: Effect of ultrasound vibration during electrodeposition of Ni–SiC nanocomposite coatings. Surf. Eng. 26, 511–518 (2010)Google Scholar
  133. 133.
    Zhou, Z.F., Pan, Y., Lei, W.X.: Ni nanocomposite films formed by Ni nanowires embedded in Ni matrix using electrodeposition. Trans. Nonferrous Metals Soc. China (English Edition) 20, 637–642 (2010)Google Scholar
  134. 134.
    Frade, T., Bouzon, V., Gomes, A., da Silva Pereira, M.I.: Pulsed-reverse current electrodeposition of Zn and Zn–TiO2 nanocomposite films. Surf. Coat. Technol. 204, 3592–3598 (2010)Google Scholar
  135. 135.
    Xue, Y.J., Liu, H.B., Lan, M.M., Li, J.S., Li, H.: Effect of different electrodeposition methods on oxidation resistance of Ni–CeO2 nanocomposite coating. Surf. Coat. Technol. 204, 3539–3545 (2010)Google Scholar
  136. 136.
    Wang, G., Zhang, K.: Superplastic Properties of Al2O3/Ni–Mn nanocomposite fabricated by electrodeposition. J. Mater. Sci. Technol. 26, 625–628 (2010)Google Scholar
  137. 137.
    Aliofkhazraei, M., Ahangarani, S., Sabour Rouhaghdam, A.: Effect of the duty cycle of pulsed current on nanocomposite layers formed by pulsed electrodeposition. Rare Metals 29, 209–213 (2010)Google Scholar
  138. 138.
    Tsai, Y.C., Hong, Y.H.: Electrodeposition of platinum and ruthenium nanoparticles in multiwalled carbon nanotube-nafion nanocomposite for methanol electrooxidation. J. Nanomater. 2009 (2009)Google Scholar
  139. 139.
    Ramalingam, S., Muralidharan, V.S., Subramania, A.: Electrodeposition and characterization of Cu–TiO2 nanocomposite coatings. J. Solid State Electrochem. 13, 1777–1783 (2009)Google Scholar
  140. 140.
    Hosseini, M.G., Abdolmaleki, M., Sadjadi, S.A.S., Boroujen, M.R., Arshadi, M.R., Khoshvaght, H.: Electrodeposition of Ni-WndashB nanocomposite from tartrate electrolyte as alternative to chromium plating. Surf. Eng. 25, 382–388 (2009)Google Scholar
  141. 141.
    Wang, P., Gao, L., Wang, L., Zhang, D., Yang, S., Song, X., Qiu, Z., Murakami, R.I.: Magnetic properties of feni nanowire arrays assembled on porous AAO template by AC electrodeposition. Int. J. Modern Phys. B 24, 2303–2307 (2010)Google Scholar
  142. 142.
    Hu, F., Chan, K.C., Yue, T.M., Surya, C.: Dynamic template assisted electrodeposition of porous ZnO thin films using a triangular potential waveform. J. Phys. Chem. C 114, 5811–5816 (2010)Google Scholar
  143. 143.
    Xia, X.H., Tu, J.P., Xiang, J.Y., Huang, X.H., Wang, X.L., Zhao, X.B.: Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries. J. Power Sour. 195, 2014–2022 (2010)Google Scholar
  144. 144.
    Ma, B., Li, Y., Zhao, J., Li, X., Xin, W.: Novel structural functional films based on self-assembly template and electrodeposition: synthesis and characterization of porous Ni/YSZ films. Thin Solid Films 517, 5172–5175 (2009)Google Scholar
  145. 145.
    Ibrahim Khan, M., Xu, W., Xiaoye, J., Bozhilov, K.N., Ozkan, C.S.: Study of a single insb nanowire fabricated via DC electrodeposition in porous templates. J. Nanosci. Nanotechnol. 9, 2639–2644 (2009)Google Scholar
  146. 146.
    Deng, M.J., Leong, T.I., Sun, I.W., Chen, P.Y., Chang, J.K., Tsai, W.T.: Fabrication of porous tin by template-free electrodeposition of tin nanowires from an ionic liquid. Electrochem. Solid-State Lett. 11, D85–D88 (2008)Google Scholar
  147. 147.
    Phok, S., Rajaputra, S., Singh, V.P.: Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates. Nanotechnology 18 (2007)Google Scholar
  148. 148.
    Gelves, G.A., Murakami, Z.T.M., Krantz, M.J., Haber, J.A.: Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. J. Mater. Chem. 16, 3075–3083 (2006)Google Scholar
  149. 149.
    Yan, H., Yang, Y., Fu, Z., Yang, B., Xia, L., Fu, S., Li, F.: Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrodeposition. Electrochem. Commun. 7, 1117–1121 (2005)Google Scholar
  150. 150.
    Gerein, N.J., Haber, J.A.: Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates. J. Phys. Chem. B 109, 17372–17385 (2005)Google Scholar
  151. 151.
    Yan, H., Yang, Y., Fu, Z., Yang, B., Wang, Z., Xia, L., Yu, S., Fu, S., Li, F.: Fabrication of 2D ordered porous ZnO films using 3D opal templates by electrodeposition. Chem. Lett. 34, 976–977 (2005)Google Scholar
  152. 152.
    Wu, M.T., Leu, I.C., Yen, J.H., Hon, M.H.: Novel electrodeposition behavior of Ni on porous anodic alumina templates without a conductive interlayer. J. Phys. Chem. B 109, 9575–9580 (2005)Google Scholar
  153. 153.
    Kumar, S., Kumar, S., Chakarvarti, S.K.: SEM morphology and XRD characterization of Ni microstructure arrays synthesized by dc electrodeposition in porous polycarbonate templates. J. Mater. Sci. 39, 3249–3251 (2004)Google Scholar
  154. 154.
    Hou, K.H., Chang, Y.F., Chang, S.M., Chang, C.H.: The heat treatment effect on the structure and mechanical properties of electrodeposited nano grain size Ni–W alloy coatings. Thin Solid Films 518, 7535–7540 (2010)Google Scholar
  155. 155.
    Bhanvase, B.A., Sonawane, S.H.: New approach for simultaneous enhancement of anticorrosive and mechanical properties of coatings: application of water repellent nano CaCO3-PANI emulsion nanocomposite in alkyd resin. Chem. Eng. J. 156, 177–183 (2010)Google Scholar
  156. 156.
    Han, B., Lu, X.: Effect of nano-sized CeF3 on microstructure, mechanical, high temperature friction and corrosion behavior of Ni–W composite coatings. Surf. Coat. Technol. 203, 3656–3660 (2009)Google Scholar
  157. 157.
    Ballarre, J., Jimenez-Pique, E., Anglada, M., Pellice, S.A., Cavalieri, A.L.: Mechanical characterization of nano-reinforced silica based sol-gel hybrid coatings on AISI 316L stainless steel using nanoindentation techniques. Surf. Coat. Technol. 203, 3325–3331 (2009)Google Scholar
  158. 158.
    Lekka, M., Koumoulis, D., Kouloumbi, N., Bonora, P.L.: Mechanical and anticorrosive properties of copper matrix micro- and nano-composite coatings. Electrochim. Acta 54, 2540–2546 (2009)Google Scholar
  159. 159.
    Zanella, C., Lekka, M., Bonora, P.L.: Influence of the particle size on the mechanical and electrochemical behaviour of micro- and nano-nickel matrix composite coatings. J. Appl. Electrochem. 39, 31–38 (2009)Google Scholar
  160. 160.
    Dhoke, S.K., Bhandari, R., Khanna, A.S.: Effect of nano-ZnO addition on the silicone-modified alkyd-based waterborne coatings on its mechanical and heat-resistance properties. Prog. Org. Coat. 64, 39–46 (2009)Google Scholar
  161. 161.
    Fedorischeva, M.V., Sergeev, V.P., Popova, N.A., Kozlov, E.V.: Temperature effect on microstructure and mechanical properties of the nano-structured Ni3Al coating. Mater. Sci. Eng. A 483–484, 644–649 (2008)Google Scholar
  162. 162.
    Wilson, G.M., Saied, S.O., Field, S.K.: Mechanical and physical properties of C and C–Cr sputter coatings measured at the nano-scale. Thin Solid Films 515, 7820–7828 (2007)Google Scholar
  163. 163.
    Park, S.Y., Kim, M.C., Park, C.G.: Mechanical properties and microstructure evolution of the nano WC–Co coatings fabricated by detonation gun spraying with post heat treatment. Mater. Sci. Eng. A 448–451, 894–897 (2007)Google Scholar
  164. 164.
    Jiang, L., Lam, Y.C., Tam, K.C., Li, D.T., Zhang, J.: The influence of fatty acid coating on the rheological and mechanical properties of thermoplastic polyurethane (TPU)/nano-sized precipitated calcium carbonate (NPCC) composites. Polymer Bull. 57, 575–586 (2006)Google Scholar
  165. 165.
    Pinto, E.M., Ramos, A.S., Vieira, M.T., Brett, C.M.A.: Brett, A corrosion study of nanocrystalline copper thin films. Corros. Sci. 52, 3891–3895 (2010)Google Scholar
  166. 166.
    Saha, G.C., Khan, T.I.: The corrosion and wear performance of microcrystalline WC–10Co–4Cr and near-nanocrystalline WC–17Co high velocity oxy-fuel sprayed coatings on steel substrate. Metallurg. Mater. Trans. A Phys. Metallurgy Mater. Sci. 41, 3000–3009 (2010)Google Scholar
  167. 167.
    Liu, L., Li, Y., Wang, F.H.: Pitting corrosion behavior of a sputtered nanocrystalline thin film of austenitic stainless steel in 3.5 mass% NaCl solution. Corros. Sci. Protect. Technol. 22, 283–288 (2010)Google Scholar
  168. 168.
    Luo, W., Xu, Y., Wang, Q., Shi, P., Yan, M.: Effect of grain size on corrosion of nanocrystalline copper in NaOH solution. Corros. Sci. 52, 3509–3513 (2010)Google Scholar
  169. 169.
    Chandrasekar, M.S., Shanmugasigamani, M.S., Malathy, P.: Synergetic effects of pulse constraints and additives in electrodeposition of nanocrystalline zinc: corrosion, structural and textural characterization. Mater. Chem. Phys. 124, 516–528 (2010)Google Scholar
  170. 170.
    Xu, J., Zhou, C., Jiang, S.: Investigation on corrosion behavior of sputter-deposited nanocrystalline (MoxCr1-x)5Si3 films by double cathode glow plasma. Intermetallics 18, 1669–1675 (2010)Google Scholar
  171. 171.
    Nie, F.L., Zheng, Y.F., Cheng, Y., Wei, S.C., Valiev, R.Z.: In vitro corrosion and cytotoxicity on microcrystalline, nanocrystalline and amorphous NiTi alloy fabricated by high pressure torsion. Mater. Lett. 64, 983–986 (2010)Google Scholar
  172. 172.
    Okouchi, H., Seki, Y., Sekigawa, T., Hira, H., Kawamura, Y.: Nanocrystalline LPSO Mg–Zn–Y–Al alloys with high mechanical strength and corrosion resistance. In: Materials Science Forum, pp. 1476–1481. (2010)Google Scholar
  173. 173.
    Lee, H.B., Wuu, D.S., Lee, C.Y., Lin, C.S.: Study of the corrosion behavior of nanocrystalline Ni–P electrodeposited coating. Metallurg. Mater. Trans. A Phys. Metallurg. Mater. Sci. 41, 450–459 (2010)Google Scholar
  174. 174.
    Sousa, C.C., Kiminami, C.S.: Corrosion of Fe-based nanocrystalline alloys with soft magnetic properties. J. ASTM Int. 7, 1–12 (2010)Google Scholar
  175. 175.
    Ishihara, T., Yan, J., Matsumoto, H.: Extraordinary fast oxide ion conductivity in La1.61GeO5-[delta] thin film consisting of nano-size grain. Solid State Ionics 177, 1733–1736 (2006)Google Scholar
  176. 176.
    Ravi, S., Ganesh, K.V., Ramanathan, A., Annamalai, J., Jaiswal, P.K.: Development of nano crystalline nickel coating for engineering applications. In: Key Engineering Materials, pp. 487–492. (2010)Google Scholar
  177. 177.
    Koleva, D.A., Boshkov, N., Bachvarov, V., Zhan, H., de Wit, J.H.W., van Breugel, K.: Application of PEO113-b-PS218 nano-aggregates for improved protective characteristics of composite zinc coatings in chloride-containing environment. Surf. Coat. Technol. 204, 3760–3772 (2010)Google Scholar
  178. 178.
    Wang, R.M., Wang, B.Y., He, Y.F., Lv, W.H., Wang, J.F.: Preparation of composited nano-TiO2 and its application on antimicrobial and self-cleaning coatings. Polym. Adv. Technol. 21, 331–336 (2010)Google Scholar
  179. 179.
    Seong, M.R., Kwon, J., Lee, G.Y., Kim, D.K., Kim, Y.S., Lee, C.S.: Optimization of surface coating condition using vapor form of alkanethiol on Cu nano powders for the application of oxidation prevention. Appl. Surf. Sci. 256, 2332–2336 (2010)Google Scholar
  180. 180.
    Wang, J.E.: Application of nano-titatium polymer coating to the coolers in oil refine factory. Corros. Protect. 30, 933–935 (2009)Google Scholar
  181. 181.
    Izumi, T., Izumi, K., Kuroiwa, N., Senjuh, A., Fujimoto, A., Adachi, M., Yamamoto, T.: Preparation of electrically conductive nano-powder of zinc oxide and application to transparent film coating. J. Alloys Compd. 480, 123–125 (2009)Google Scholar
  182. 182.
    Tian, Z., Wang, X., Shu, L., Wang, T., Song, T.H., Gui, Z., Li, L.: Preparation of nano BaTiO3-based ceramics for multilayer ceramic capacitor application by chemical coating method. J. Am. Ceram. Soc. 92, 830–833 (2009)Google Scholar
  183. 183.
    Shibli, S.M.A., Jayalekshmi, A.C.: A novel nano hydroxyapatite-incorporated Ni–P coating as an effective inter layer for biological applications. J. Mater. Sci. Mater. Med. 20, 711–718 (2009)Google Scholar
  184. 184.
    Lewis, F., Mantovani, D.: Methods to investigate the adhesion of soft nano-coatings on metal substrates—application to polymer-coated stents. Macromol. Mater. Eng. 294, 11–19 (2009)Google Scholar
  185. 185.
    Zhang, X., Cheng, X., Yin, H., Yuan, J., Xu, C.: Preparation of needle shaped nano-copper by microwave-assisted water system and study on its application of enhanced epoxy resin coating electrical conductivity. Appl. Surf. Sci. 254, 5757–5759 (2008)Google Scholar
  186. 186.
    Jacquot, P., Andreux, C., Stauder, B.: Effect of industrial surface finishes on heat treatment and surface engineering of steel. Int. Heat Treat. Surf. Eng. 4, 110–116 (2010)Google Scholar
  187. 187.
    Stevenson, P., Ata, S., Evans, G.M.: Erratum: the behavior of an oscillating particle attached to a gas–liquid surface (Industrial and Engineering Chemistry Research 48 (8025)). Ind. Eng. Chem. Res. 49, 3504 (2010)Google Scholar
  188. 188.
    Kaufmann, H.: Industrial applications of plasma and ion surface engineering. Surf. Coat. Technol. 74–75, 23–28 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Materials Engineering DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations