Synthesis, Processing and Application of Nanostructured Coatings

  • Mahmood AliofkhazraeiEmail author
Part of the Engineering Materials book series (ENG.MAT.)


This chapter discusses an introduction about nanostructured coatings and their fabrication methods. It starts from basics about nanotechnology and goes through different technologies for synthesis and processing of nanostructured films with focus on size effect in nanometric scale. Detailed discussions about some methods with enough examples were presented in this chapter and fabrication methods of nanostructured films were reviewed. Different parts of this chapter include discussions about nanotechnology, size effect, nanoparticles, thin films, Sol–gel method and applications of nanostructured coatings.


Physical Vapor Deposition Surface Engineering Nanostructured Film Joint Width Mineral Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bernand-Mantel, A., Bouzehouane, K., Seneor, P., Fusil, S., Deranlot, C., Brenac, A., Notin, L., Morel, R., Petroff, F., Fert, A.: A versatile nanotechnology to connect individual nano-objects for the fabrication of hybrid single-electron devices. Nanotechnology 21 (2010)Google Scholar
  2. 2.
    Stone, D., Harper, B.J., Lynch, I., Dawson, K., Harper, S.L.: Exposure assessment: recommendations for nanotechnology-based pesticides. Int. J. Occup. Environ. Health 16, 467–474 (2010)Google Scholar
  3. 3.
    Wickson, F., Grieger, K., Baun, A.: Nature and nanotechnology: science, ideology and policy. Aust. J. Emerg. Technol. Soc. 8, 5–23 (2010)Google Scholar
  4. 4.
    Quandt, A., Özdoğan, C.: Biominerals and graphene—basic aspects of nanoscience. Commun. Nonlinear Sci. Numer. Simul. 15, 1575–1582 (2010)Google Scholar
  5. 5.
    Zhu, T., Li, J.: Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010)Google Scholar
  6. 6.
    Mirkovic, T., Zacharia, N.S., Scholes, G.D., Ozin, G.A.: Fuel for thought: chemically powered nanomotors out-swim nature’s flagellated bacteria. ACS Nano 4, 1782–1789 (2010)Google Scholar
  7. 7.
    Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Mach-Zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42, 249–259 (2010)Google Scholar
  8. 8.
    Jones, R.: Feynman’s unfinished business. Nat. Nanotechnol. 4, 785 (2009)Google Scholar
  9. 9.
    Segal, M.: Surely you’re happy, Mr Feynman!. Nat. Nanotechnol. 4, 786–788 (2009)Google Scholar
  10. 10.
    Remin, P., Ferreira, R., Montenegro, J.M., Suau, R., Pérez-Inestrosa, E., Pischel, U.: Reversible molecular logic: a photophysical example of a Feynman gate. ChemPhysChem 10, 2004–2007 (2009)Google Scholar
  11. 11.
    Ball, P.: Feynman's fancy Richard Feynman’s famous talk on atom-by-atom assembly is often credited with kick-starting nanotechnology. Fifty years on, Philip Ball investigates how influential it really was. Chem. World 6, 58–62 (2009)Google Scholar
  12. 12.
    Pitkethly, M.: Nanotechnology: past, present, and future. Nano Today 3, 6 (2008)Google Scholar
  13. 13.
    Pierotti, M.A., Lombardo, C., Rosano, C.: Nanotechnology: going small for a giant leap in cancer diagnostics and therapeutics. Tumori 94, 191–196 (2008)Google Scholar
  14. 14.
    Grimes, M., Kobrin, B.: Surface engineering for microfabrication. Solid State Technol. 51, 28–31 (2008)Google Scholar
  15. 15.
    Fadeel, B., Kagan, V., Krug, H., Shvedova, A., Svartengren, M., Tran, L., Wiklund, L.: There’s plenty of room at the forum: potential risks and safety assessment of engineered nanomaterials. Nanotoxicology 1, 73–84 (2007)Google Scholar
  16. 16.
    Toumey, C.: The man who understood the Feynman machine. Nat. Nanotechnol. 2, 9–10 (2007)Google Scholar
  17. 17.
    Devreese, J.T.: Importance of nanosensors: Feynman’s vision and the birth of nanotechnology. In: Materials Research Society Symposium Proceedings, pp. 78–88. (2006)Google Scholar
  18. 18.
    Junk, A., Riess, F.: From an idea to a vision: there’s plenty of room at the bottom. Am. J. Phys. 74, 825–830 (2006)Google Scholar
  19. 19.
    Mansoori, G.A., Soelaiman, T.A.F.: Nanotechnology—an introduction for the standards community. J. ASTM Int. 2, 17–38 (2005)Google Scholar
  20. 20.
    Gröning, P.: Nanotechnology: an approach to mimic natural architectures and concepts. Adv. Eng. Mater. 7, 279–291 (2005)Google Scholar
  21. 21.
    Ghosh, T.: The base of molecular nanotechnology and its implication in textiles. Colourage 52, 39–43 (2005)Google Scholar
  22. 22.
    Peterson, C.L.: Nanotechnology: from Feynman to the grand challenge of molecular manufacturing. IEEE Technol. Soc. Mag. 23, 9–15 (2004)Google Scholar
  23. 23.
    Yamada, N.: Quasi-distribution of tunneling time. Acta Phys. Hung. Ser. A Heavy Ion Phys. 19, 329–332 (2004)Google Scholar
  24. 24.
    Gabrys, B.J., Pesz, K., Bartkiewicz, S.J.: Brownian motion, molecular motors and ratchets. Phys. A Stat. Mech. Appl. 336, 112–122 (2004)Google Scholar
  25. 25.
    Banerjee, R., Katsenovich, Y., Lagos, L., McIintosh, M., Zhang, X., Li, C.Z.: Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr. Med. Chem. 17, 3120–3141 (2010)Google Scholar
  26. 26.
    Varnavski, O., Ramakrishna, G., Kim, J., Lee, D., Goodson Iii, T.: Optically excited acoustic vibrations in quantum-sized monolayer-protected gold clusters. ACS Nano 4, 3406–3412 (2010)Google Scholar
  27. 27.
    Pattantyus-Abraham, A.G., Kramer, I.J., Barkhouse, A.R., Wang, X., Konstantatos, G., Debnath, R., Levina, L., Raabe, I., Nazeeruddin, M.K., Grätzel, M., Sargent, E.H.: Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010)Google Scholar
  28. 28.
    Kreimeyer, A.: Size does matter. OECD Observer (2010)Google Scholar
  29. 29.
    Oviedo, O.A., Mariscal, M.M., Leiva, E.P.M.: Theoretical studies of preparation of core-shell nanoparticles by electrochemical metal deposition. Electrochim. Acta 55, 8244–8251 (2010)Google Scholar
  30. 30.
    De Julin Fernndez, C., Mattei, G., Paz, E., Novak, R.L., Cavigli, L., Bogani, L., Palomares, F.J., Mazzoldi, P., Caneschi, A.: Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles. Nanotechnology 21 (2010)Google Scholar
  31. 31.
    Keten, S., Xu, Z., Ihle, B., Buehler, M.J.: Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9, 359–367 (2010)Google Scholar
  32. 32.
    Robertson, C.G., Hogan, T.E., Rackaitis, M., Puskas, J.E., Wang, X.: Effect of nanoscale confinement on glass transition of polystyrene domains from self-assembly of block copolymers. J. Chem. Phys. 132 (2010)Google Scholar
  33. 33.
    Miloshev, N., Miloshev, G.: Effect of small particle sizes on the equilibrium crystal shape and the work of nucleus formation. Comptes Rendus de L’Academie Bulgare des Sciences 63, 211–220 (2010)Google Scholar
  34. 34.
    Peng, Y., Wang, Y., Yang, Y., Dlott, D.D.: Simulation of the absorption spectra of nanometallic Al particles with core-shell structure: size-dependent interband transitions. J. Nanopart. Res. 12, 777–787 (2010)Google Scholar
  35. 35.
    De Paoli Lacerda, S.H., Park, J.J., Meuse, C., Pristinski, D., Becker, M.L., Karim, A., Douglas, J.F.: Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4, 365–379 (2010)Google Scholar
  36. 36.
    Ohno, T., Tagawa, S., Itoh, H., Suzuki, H., Matsuda, T.: Size effect of TiO2–SiO2 nano-hybrid particle. Mater. Chem. Phys. 113, 119–123 (2009)Google Scholar
  37. 37.
    Ko, S.H., Pan, H., Hotz, N., Grigoropoulos, C.P.: Large area flexible electronics fabrication by selective laser sintering of nanoparticles with a scanning mirror. In: Materials Research Society Symposium Proceedings, pp. 7–12. (2010)Google Scholar
  38. 38.
    Murzin, D.Y.: Kinetic analysis of cluster size dependent activity and selectivity. J. Catal. 276, 85–91 (2010)Google Scholar
  39. 39.
    Soria, J., Sanz, J., Sobrados, I., Coronado, J.M., Hernández-Alonso, M.D., Fresno, F.: Water–hydroxyl interactions on small anatase nanoparticles prepared by the hydrothermal route. J. Phys. Chem. C 114, 16534–16540 (2010)Google Scholar
  40. 40.
    Miyazaki, A., Ito, Y., Enoki, T.: Classes of nanomagnets created from alkanethiol-coated Pt or Pd nanoparticles and their alloys with Co. Eur. J. Inorg. Chem. 4279–4287 (2010)Google Scholar
  41. 41.
    Hai, P.N., Ohya, S., Tanaka, M.: Long spin-relaxation time in a single metal nanoparticle. Nat. Nanotechnol. 5, 593–596 (2010)Google Scholar
  42. 42.
    Tang, W., Lu, W., Luo, X., Wang, B., Zhu, X., Song, W., Yang, Z., Sun, Y.: Particle size effects on La0.7Ca0.3MnO3: size-induced changes of magnetic phase transition order and magnetocaloric study. J. Mag. Mag. Mater. 322, 2360–2368 (2010)Google Scholar
  43. 43.
    El Nimr, M.K., Moharram, B.M., Saafan, S.A., Assar, S.T.: Particle size distribution, magnetic permeability and dc conductivity of nano-structured and bulk LiNiZn–ferrite samples. J. Magn. Magn. Mater. 322, 2108–2112 (2010)Google Scholar
  44. 44.
    Cheng, R., Zhou, W., Wang, J.L., Qi, D., Guo, L., Zhang, W.X., Qian, Y.: Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect. J. Hazard. Mater. 180, 79–85 (2010)Google Scholar
  45. 45.
    Chen, W., Kimel, A., Kirilyuk, A., Rasing, T.: Apertureless SNOM study on gold nanoparticles: experiments and simulations. Phys. Status Solid (B) Basic Res. 247, 2047–2050 (2010)Google Scholar
  46. 46.
    Khazrayie, M.A., Aghdam, A.R.S.: Si3N4/Ni nanocomposite formed by electroplating: effect of average size of nanoparticulates. Transactions of Nonferrous Metals Society of China (English Edition), vol. 20, pp. 1017–1023. (2010)Google Scholar
  47. 47.
    Tomenson, J.A., Morfeld, P.: Multiple errors made by authors result in a huge overestimation of potential exposure to particles in the size range 10–30nm in TiO2 nanoparticle production facilities. J. Hazard. Mater. 183, 954–955 (2010)Google Scholar
  48. 48.
    Landi, G.T., Santos, A.D.: High-density gas aggregation nanoparticle gun applied to the production of SmCo clusters. J. Mater. Sci. 45, 4906–4911 (2010)Google Scholar
  49. 49.
    Knieke, C., Steinborn, C., Romeis, S., Peukert, W., Breitung-Faes, S., Kwade, A.: Nanoparticle production with stirred-media mills: opportunities and limits. Chem. Eng. Technol. 33, 1401–1411 (2010)Google Scholar
  50. 50.
    Hu, P., O’Neil, W., Hu, Q.: Synthesis of 10 nm Ag nanoparticle polymer composite pastes for low temperature production of high conductivity films. Appl. Surf. Sci. 257, 680–685 (2010)Google Scholar
  51. 51.
    Marin-Flores, O., Turba, T., Ellefson, C., Scudiero, L., Breit, J., Norton, M.G., Ha, S.: Nanoparticle molybdenum dioxide: a new alternative catalytic material for hydrogen production via partial oxidation of jet-a fuels. J. Nanoelectron. Optoelectron. 5, 110–114 (2010)Google Scholar
  52. 52.
    Zhang, Y.T., Guo, Y., Wang, D.W., Feng, Y., Ma, T.C.: Fe nanoparticle production by an atmospheric cold plasma jet. Chin. Phys. Lett. 27 (2010)Google Scholar
  53. 53.
    Shah, V., Dobiášová, P., Baldrian, P., Nerud, F., Kumar, A., Seal, S.: Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus trametes versicolor. J. Hazard. Mater. 178, 1141–1145 (2010)Google Scholar
  54. 54.
    Patel, N., Fernandes, R., Guella, G., Miotello, A.: Nanoparticle-assembled Co–B thin film for the hydrolysis of ammonia borane: a highly active catalyst for hydrogen production. Appl. Catal. B Environ. 95, 137–143 (2010)Google Scholar
  55. 55.
    Iwuchukwu, I.J., Vaughn, M., Myers, N., O’Neill, H., Frymier, P., Bruce, B.D.: Self-organized photosynthetic nanoparticle for cell-free hydrogen production. Nat. Nanotechnol. 5, 73–79 (2010)Google Scholar
  56. 56.
    Delaportas, D., Svarnas, P., Alexandrou, I., Siokou, A., Black, K., Bradley, J.W.: Gamma-Al2O3 nanoparticle production by arc-discharge in water. J. Phys. D Appl. Phys. 42 (2009)Google Scholar
  57. 57.
    Ding, J., Gao, Q., Luo, D., Shi, Z.G., Feng, Y.Q.: n-Octadecylphosphonic acid grafted mesoporous magnetic nanoparticle: preparation, characterization, and application in magnetic solid-phase extraction. J. Chromatogr. A 1217, 7351–7358 (2010)Google Scholar
  58. 58.
    Zalba, S., Navarro-Blasco, I., Moreno, D., Garrido, M.J.: Application of non-aggressive sample preparation and electrothermal atomic absorption spectrometry to quantify platinum in biological matrices after cisplatin nanoparticle administration. Microchem. J. 96, 415–421 (2010)Google Scholar
  59. 59.
    Hoertz, P.G., Chen, Z., Kent, C.A., Meyer, T.J.: Application of high surface area tin-doped indium oxide nanoparticle films as transparent conducting electrodes. Inorg. Chem. 49, 8179–8181 (2010)Google Scholar
  60. 60.
    Feng, S., Ren, Z., Wei, Y., Jiang, B., Liu, Y., Zhang, L., Zhang, W., Fu, H.: Synthesis and application of hollow magnetic graphitic carbon microspheres with/without TiO2 nanoparticle layer on the surface. Chem. Commun. 46, 6276–6278 (2010)Google Scholar
  61. 61.
    Oh, J.H., Lee, J.S.: Salt concentration-induced dehybridisation of DNA–gold nanoparticle conjugate assemblies for diagnostic applications. Chem. Commun. 46, 6382–6384 (2010)Google Scholar
  62. 62.
    Frasconi, M., Tortolini, C., Botrè, F., Mazzei, F.: Multifunctional Au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Anal. Chem. 82, 7335–7342 (2010)Google Scholar
  63. 63.
    George, C., Kuriakose, S., Prakashkumar, B., Mathew, T.: Synthesis, characterisation and antibacterial applications of water-soluble, silver nanoparticle-encapsulated-cyclodextrin. Supramol. Chem. 22, 511–516 (2010)Google Scholar
  64. 64.
    Wang, J., Munir, A., Zhu, Z., Zhou, H.S.: Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules. Anal. Chem. 82, 6782–6789 (2010)Google Scholar
  65. 65.
    Mechiakh, R., Sedrine, N.B., Chtourou, R., Bensaha, R.: Correlation between microstructure and optical properties of nano-crystalline TiO2 thin films prepared by sol–gel dip coating. Appl. Surf. Sci. 257, 670–676 (2010)Google Scholar
  66. 66.
    Khaleeq-Ur-Rahman, M., Bhatti, K.A., Rafique, M.S., Anjum, S., Latif, A., Anjum, M., Ahsan, A., Ozair, H.: Morphological and structural analysis of nano-structured gold thin film on silicon by pulsed laser deposition technique. Vacuum 85, 353–357 (2010)Google Scholar
  67. 67.
    Li, C., Li, Z., Zhu, H., Wang, K., Wei, J., Li, X., Sun, P., Zhang, H., Wu, D.: Graphene nano-“patches” on a carbon nanotube network for highly transparent/conductive thin film applications. J. Phys. Chem. C 114, 14008–14012 (2010)Google Scholar
  68. 68.
    Han, X., Wang, L., Liu, P., Yue, Y., Yang, M., Sun, J., Zhang, Z.: Dynamic atomic mechanisms of plasticity of Ni nanowires and nano crystalline ultra-thin films. In: Materials Science Forum, pp. 2293–2296. (2010)Google Scholar
  69. 69.
    Wu, C.W., Lee, J.L., Lin, Y., Shen, Y.K.: Surface modification of plastic thin film using anodic aluminum oxide template for nano imprint. In: Key Engineering Materials, pp. 711–716. (2010)Google Scholar
  70. 70.
    Sasikumar, D., Ganesan, S.: Effect of temperature and current density in electrodeposited Co–W magnetic nano thin film. Dig. J. Nanomater. Biostruct. 5, 477–482 (2010)Google Scholar
  71. 71.
    Wu, F., Fang, L., Zhou, K., Pan, Y.J., Peng, L.P., Huang, Q.L., Yang, X.F., Kong, C.Y.: Effect of thickness on the properties of Ga-doped Nano-ZnO thin films prepared by RF magnetron sputtering. J. Supercond. Nov. Mag. 23, 905–908 (2010)Google Scholar
  72. 72.
    Xiong, L., Liu, F., Wang, J., Man, W., Weng, J., Liu, C.: Plasma processing of boron-doped nano-crystalline diamond thin film fabricated on poly-crystalline diamond thick film. Plasma Sci. Technol. 12, 433–436 (2010)Google Scholar
  73. 73.
    Fang, L., Yang, X.F., Peng, L.P., Zhou, K., Wu, F., Huang, Q.L., Kong, C.Y.: Thermoelectric and magnetothermoelectric properties of In-doped Nano-ZnO thin films prepared by RF magnetron sputtering. J. Superconduct. Nov. Mag. 23, 889–892 (2010)Google Scholar
  74. 74.
    Mukherjee, N., Mondal, A.: Comparative study on the properties of galvanically deposited nano- and microcrystalline thin films of PbSe. J. Elec. Mater. 39, 1177–1185 (2010)Google Scholar
  75. 75.
    Schulz, B., Täuber, D., Friedriszik, F., Graaf, H., Schuster, J., Von Borczyskowski, C.: Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films. Phys. Chem. Chem. Phys. 12, 11555–11564 (2010)Google Scholar
  76. 76.
    Li, T.D., Inigo, A.R., Fann, W., White, J.D., Huang, Y.F., Wei, P.K.: Development of a controlled environment near-field optical microscope for organic thin film studies. J. Chin. Chem. Soc. 57, 469–477 (2010)Google Scholar
  77. 77.
    Wang, Y., Zhao, N., Zhang, M., Zhao, X.: Optical waveguide and nonlinear properties of Bi3NdTi3O12 thin films. J. Wuhan Univ. Technol. Mater. Sci. Ed. 25, 743–746 (2010)Google Scholar
  78. 78.
    Hegab, N.A., El-Mallah, H.M.: Optical properties of As36Te42Ge10Si12 thin films. Acta Phys. Polonica A 118, 637–642 (2010)Google Scholar
  79. 79.
    Suthan Kissinger, N.J., Suthagar, J., Saravana Kumar, B., Balasubramaniam, T., Perumal, K.: Effect of substrate temperature on the structural and optical properties of nanocrystalline cadmium selenide thin films prepared by electron beam evaporation technique. Acta Phys. Polonica A 118, 623–628 (2010)Google Scholar
  80. 80.
    Basova, T., Hassan, A., Yuksel, F., Gurek, A.G., Ahsen, V.: Optical detection of pentachlorophenol in water using thin films of octa-tosylamido substituted zinc phthalocyanine. Sens. Actuators B Chem. 150, 523–528 (2010)Google Scholar
  81. 81.
    Kim, I.Y., Kim, K.J., Shin, J.H.: Preventing optical deactivation of nanocluster Si sensitized Er using nanometer-thin SiNx/SiO2:Er heterolayer thin film. J. Appl. Phys. 108 (2010)Google Scholar
  82. 82.
    Liu, C., Morko, H.: Regrowth of ZnO thin film with high surface flatness and enhanced optical properties on annealed buffer layers by rf sputtering deposition. Superlattices Microstruct. 48, 502–508 (2010)Google Scholar
  83. 83.
    Mohamed, S.H., Raaif, M.: Effects of thickness and rf plasma oxidizing on structural and optical properties of SiOxNy thin films. Surf. Coat. Technol. 205, 525–532 (2010)Google Scholar
  84. 84.
    Bourgoin, J.P., Allogho, G.G., Haché, A.: Thermal conduction in thin films measured by optical surface thermal lensing. J. Appl. Phys. 108 (2010)Google Scholar
  85. 85.
    Mahmoud, W.E., Al-Ghamdi, A.A.: Synthesis of CdZnO thin film as a potential candidate for optical switches. Opt. Laser Technol. 42, 1134–1138 (2010)Google Scholar
  86. 86.
    Tong, G.B., Muhamad, M.R., Rahman, S.A.: Optical properties of annealed Si:H thin film prepared by layer-by-layer (LBL) deposition technique. Phys. B Condens. Matter 405, 4838–4844 (2010)Google Scholar
  87. 87.
    Fu, C.F., Chen, X.M., Li, L., Han, L.F., Wu, X.: Effects of the Cr doping on structure and optical properties of ZnO thin films. Optoelectron. Lett. 6, 37–40 (2010)Google Scholar
  88. 88.
    Cao, M., Sun, Y., Wu, J., Chen, X., Dai, N.: Effects of cadmium salts on the structure, morphology and optical properties of acidic chemical bath deposited CdS thin films. J. Alloys Compd. 508, 297–300 (2010)Google Scholar
  89. 89.
    Nathanael, A.J., Mangalaraj, D., Ponpandian, N.: Controlled growth and investigations on the morphology and mechanical properties of hydroxyapatite/titania nanocomposite thin films. Compos. Sci. Technol. 70, 1645–1651 (2010)Google Scholar
  90. 90.
    Chou, H.S., Huang, J.C., Chang, L.W.: Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum. Surf. Coat. Technol. 205, 587–590 (2010)Google Scholar
  91. 91.
    Haseeb, A.S.M.A., Hasan, M.M., Masjuki, H.H.: Structural and mechanical properties of nanostructured TiO2 thin films deposited by RF sputtering. Surf. Coat. Technol. 205, 338–344 (2010)Google Scholar
  92. 92.
    Chawla, V., Jayaganthan, R., Chandra, R.: Influence of sputtering pressure on the structure and mechanical properties of nanocomposite Ti–Si–N thin films. J. Mater. Sci. Technol. 26, 673–678 (2010)Google Scholar
  93. 93.
    Yen, C.Y., Jian, S.R., Lai, Y.S., Yang, P.F., Liao, Y.Y., Jang, J.S.C., Lin, T.H., Juang, J.Y.: Mechanical properties of the hexagonal HoMnO3 thin films by nanoindentation. J. Alloys Compd. 508, 523–527 (2010)Google Scholar
  94. 94.
    Rathod, V.T., Mahapatra, D.R., Jain, A., Gayathri, A.: Characterization of a large-area PVDF thin film for electro-mechanical and ultrasonic sensing applications. Sens. Actuators A Phys. 163, 164–171 (2010)Google Scholar
  95. 95.
    Choi, Y.H., Bulliard, X., Benayad, A., Leterrier, Y., Mnson, J.A.E., Lee, K.H., Choi, D., Park, J.J., Kim, J.: Design and fabrication of compositionally graded inorganic oxide thin films: mechanical, optical and permeation characteristics. Acta Mater. 58, 6495–6503 (2010)Google Scholar
  96. 96.
    Vosgueritchian, M., Lemieux, M.C., Dodge, D., Bao, Z.: Effect of surface chemistry on electronic properties of carbon nanotube network thin film transistors. ACS Nano 4, 6137–6145 (2010)Google Scholar
  97. 97.
    Ohsawa, T., Iwaya, K., Shimizu, R., Hashizume, T., Hitosugi, T.: Thickness-dependent local surface electronic structures of homoepitaxial SrTiO3 thin films. J. Appl. Phys. 108 (2010)Google Scholar
  98. 98.
    Karamat, S., Rawat, R.S., Ghaffari, M., Lee, P., Tan, T.L.: Electronic, structural and magnetic characterization of bulk (ZnO)1-x(MnO2)x system and their PLD synthesized thin films at room temperature. J. Phys. Conf. Ser. 200 (2010)Google Scholar
  99. 99.
    Luo, C.W., Lo, H.P., Su, C.H., Wu, I.H., Chen, Y.J., Wu, K.H., Lin, J.Y., Uen, T.M., Juang, J.Y., Kobayashi, T.: Doping dependence of the ultrafast electronic dynamics of Y1-x Prx Ba2 Cu3O7-δ thin-film superconductors from femtosecond optical spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 82 (2010)Google Scholar
  100. 100.
    Lee, J.S., Nakamura, M., Okuyama, D., Kumai, R., Arima, T., Kawasaki, M., Tokura, Y.: Competing electronic orders in anisotropically strained (Pr0.6 Ca0.4)1-x (La0.6 Sr0.4) x MnO3 thin films. Phys. Rev. B Condens. Matter Mater. Phys. 82 (2010)Google Scholar
  101. 101.
    El Amrani, A., Hijazi, F., Lucas, B., Bouclé, J., Aldissi, M.: Electronic transport and optical properties of thin oxide films. Thin Solid Films 518, 4582–4585 (2010)Google Scholar
  102. 102.
    Chu, C.H., Da Shiue, C., Cheng, H.W., Tseng, M.L., Chiang, H.P., Mansuripur, M., Tsai, D.P.: Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. Opt. Express 18, 18383–18393 (2010)Google Scholar
  103. 103.
    Van Der Laan, G., Chopdekar, R.V., Suzuki, Y., Arenholz, E.: Strain-induced changes in the electronic structure of MnCr2O4 thin films probed by X-ray magnetic circular dichroism. Phys. Rev. Lett. 105 (2010)Google Scholar
  104. 104.
    Haupricht, T., Sutarto, R., Haverkort, M.W., Ott, H., Tanaka, A., Hsieh, H.H., Lin, H.J., Chen, C.T., Hu, Z., Tjeng, L.H.: Local electronic structure of Fe2+ impurities in MgO thin films: temperature-dependent soft x-ray absorption spectroscopy study. Phys. Rev. B Condens. Matter Mater. Phys. 82 (2010)Google Scholar
  105. 105.
    Macmanus-Driscoll, J.L.: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035–2045 (2010)Google Scholar
  106. 106.
    Kanai, K., Miyazaki, T., Wakita, T., Akaike, K., Yokoya, T., Ouchi, Y., Seki, K.: Lateral inhomogeneity in the electronic structure of a conjugated poly(3-hexylthiophene) thin film. Adv. Funct. Mater. 20, 2046–2052 (2010)Google Scholar
  107. 107.
    Maruyama, Y., Motohashi, S., Tanaka, M., Ogata, H., Zhou, B., Kobayashi, A., Shoda, M., Bandow, S., Iijima, S.: Some electronic properties and morphological features of hybrid material DNASWCNT thin films. Solid State Commun. 150, 1584–1586 (2010)Google Scholar
  108. 108.
    Wang, S.J., Wong, T.I., Chen, Q., Yang, M., Wong, L.M., Chai, J.W., Zhang, Z., Pan, J.S., Feng, Y.P.: Feng, Atomic and electronic structures at ZnO and ZrO2 interface for transparent thin-film transistors. Phys. Status Solid (A) Appl. Mater. 207, 1731–1734 (2010)Google Scholar
  109. 109.
    Latteyer, F., Peisert, H., Göhring, N., Peschel, A., Chassé, T.: Vibrational and electronic characterisation of Staphylococcus aureus wall teichoic acids and relevant components in thin films. Anal. Bioanal. Chem. 397, 2429–2437 (2010)Google Scholar
  110. 110.
    Shin, H., Sim, B., Lee, M.: Laser-driven high-resolution patterning of indium tin oxide thin film for electronic device. Opt. Lasers Eng. 48, 816–820 (2010)Google Scholar
  111. 111.
    Tahir, D., Kwon, H.L., Shin, H.C., Oh, S.K., Kang, H.J., Heo, S., Chung, J.G., Lee, J.C., Tougaard, S.: Electronic and optical properties of Al2O3/SiO2 thin films grown on Si substrate. J. Phys. D Appl. Phys. 43 (2010)Google Scholar
  112. 112.
    Asenjo, B., Guilln, C., Chaparro, A.M., Saucedo, E., Bermudez, V., Lincot, D., Herrero, J., Gutirrez, M.T.: Properties of In2S3 thin films deposited onto ITO/glass substrates by chemical bath deposition. J. Phys. Chem. Solids 71, 1629–1633 (2010)Google Scholar
  113. 113.
    Park, T.J., Kim, J.H., Jang, J.H., Lee, J., Lee, S.W., Kim, U.K., Seo, M., Jung, H.S., Lee, S.Y., Hwang, C.S.: Optimized electrical properties and chemical structures of SrTiO3 thin films on Si using various interfacial barrier layers. J. Electrochem. Soc. 157, G216–G220 (2010)Google Scholar
  114. 114.
    Guneri, E., Ulutas, C., Kirmizigul, F., Altindemir, G., Gode, F., Gumus, C.: Effect of deposition time on structural, electrical, and optical properties of SnS thin films deposited by chemical bath deposition. Appl. Surf. Sci. 257, 1189–1195 (2010)Google Scholar
  115. 115.
    Wang, L., Chen, C., Tang, Z., Lu, C., Yu, B.: Dependence of Zr content on electrical properties of Bi3.15Nd0.85Ti3–xZrxO12 thin films synthesized by chemical solution deposition (CSD). Vacuum 85, 203–206 (2010)Google Scholar
  116. 116.
    Ubale, A.U.: Effect of complexing agent on growth process and properties of nanostructured Bi2S3 thin films deposited by chemical bath deposition method. Mater. Chem. Phys. 121, 555–560 (2010)Google Scholar
  117. 117.
    Mohan, S., Taen, T., Yagyuda, H., Nakajima, Y., Tamegai, T., Katase, T., Hiramatsu, H., Hosono, H.: Transport and magnetic properties of Co-doped BaFe2As2 epitaxial thin films grown on MgO substrate. Supercond. Sci. Technol. 23 (2010)Google Scholar
  118. 118.
    Brunken, H., Somsen, C., Savan, A., Ludwig, A.: Microstructure and magnetic properties of FeCo/Ti thin film multilayers annealed in nitrogen. Thin Solid Films 519, 770–774 (2010)Google Scholar
  119. 119.
    Belmeguenai, M., Zighem, F., Chauveau, T., Faurie, D., Roussigá, Y., Chérif, S.M., Moch, P., Westerholt, K., Monod, P.: Structural, static and dynamic magnetic properties of Co2MnGe thin films on a sapphire a-plane substrate. J. Appl. Phys. 108 (2010)Google Scholar
  120. 120.
    Sugai, I., Sakai, S., Matsumoto, Y., Naramoto, H., Mitani, S., Takanashi, K., Maeda, Y.: Composition dependence of magnetic and magnetotransport properties in C60–Co granular thin films. J. Appl. Phys. 108 (2010)Google Scholar
  121. 121.
    Kim, C.O., Kim, S., Oh, H.T., Choi, S.H., Shon, Y., Lee, S., Hwang, H.N., Hwang, C.C.: Effect of electrical conduction properties on magnetic behaviors of Cu-doped ZnO thin films. Phys. B Conden. Matter 405, 4678–4681 (2010)Google Scholar
  122. 122.
    Hu, Y.C., Hou, D.L., Gao, W.X., Zhang, Q., Ma, L., Zhen, C.M., Tang, G.D.: Study of the local micro-structure and magnetic and transport properties of CrxGe1-x thin films. J. Mag. Mag. Mater. 322, 3902–3906 (2010)Google Scholar
  123. 123.
    St, K., Wesselinowa, J.M.: Electric field control of magnetic properties in multiferroic thin films. Phys. Status Solid (B) Basic Res. 247, 2284–2289 (2010)Google Scholar
  124. 124.
    Krishnappa, M.R.M., Rajasekaran, N., Ganesan, S., Emerson, R.N.: Influence of organic additive thiourea on the properties of hard magnetic CoMnP thin film alloys electrodeposited from chloride bath. J. Optoelectron. Adv. Mater. 12, 1863–1868 (2010)Google Scholar
  125. 125.
    Gredig, T., Gentry, K.P., Colesniuc, C.N., Schuller, I.K.: Control of magnetic properties in metallo-organic thin films. J. Mater. Sci. 45, 5032–5035 (2010)Google Scholar
  126. 126.
    Lu, W., Wang, Y., Yan, B., Suzuki, T.: Magnetic properties and first-order magnetic phase transition in single crystal FeRh thin film. J. Mater. Sci. 45, 4919–4923 (2010)Google Scholar
  127. 127.
    Karaagac, H., Parlak, M.: Investigation of physical properties of quaternary AgGa o.5Ino.5Te2 thin films deposited by thermal evaporation. J. Alloys Compd. 503, 468–473 (2010)Google Scholar
  128. 128.
    Mavrokefalos, A., Lin, Q., Beekman, M., Seol, J.H., Lee, Y.J., Kong, H., Pettes, M.T., Johnson, D.C., Shi, L.: In-plane thermal and thermoelectric properties of misfit-layered [(PbSe) 0.99] x (WSe2) x superlattice thin films. Appl. Phys. Lett. 96 (2010)Google Scholar
  129. 129.
    Nagase, K., Kubo, S., Nakagawa, M.: Resist properties of thin poly(methyl methacrylate) and polystyrene films patterned by thermal nanoimprint lithography for au electrodeposition. Jpn. J. Appl. Phys. 49, 06GL051–06GL055 (2010)Google Scholar
  130. 130.
    Ouni, B., Ouerfelli, J., Amlouk, A., Boubaker, K., Amlouk, M.: Structural, mechanical and opto-thermal properties of non-crystalline SbxOy thin films. J. Non Cryst. Solids 356, 1294–1299 (2010)Google Scholar
  131. 131.
    Gaikwad, R.S., Chae, S.Y., Mane, R.S., Cai, G., Han, S.H., Joo, O.S.: Large area (9*9 cm2) electrostatically sprayed nanocrystalline zincite thin films for hydrogen production application. Int. J. Hydrogen Energy 35, 6549–6553 (2010)Google Scholar
  132. 132.
    Maggioni, G., Carturan, S., Quaranta, A., Vomiero, A., Tonezzer, M., Della Mea, G.: Production and characterization of thin film materials for indoor optical gas sensing applications. J. Phys. Conf. Ser. 41, 531–534 (2006)Google Scholar
  133. 133.
    Zhang, Y., Gao, J., Meng, G., Liu, X.: Production of dense yttria-stabilized zirconia thin films by dip-coating for IT-SOFC application. J. Appl. Electrochem. 34, 637–641 (2004)Google Scholar
  134. 134.
    Huang, L., Wang, F., Luan, Z., Meng, L.: Pyrite (FeS2) thin films deposited by sol-gel method. Mater. Lett. 64, 2612–2615 (2010)Google Scholar
  135. 135.
    Yakuphanoglu, F.: Nanocluster n-CdO thin film by sol-gel for solar cell applications. Appl. Surf. Sci. 257, 1413–1419 (2010)Google Scholar
  136. 136.
    Kakati, N., Jee, S.H., Kim, S.H., Oh, J.Y., Yoon, Y.S.: Thickness dependency of sol-gel derived ZnO thin films on gas sensing behaviors. Thin Solid Films 519, 494–498 (2010)Google Scholar
  137. 137.
    Carvalho, D.M., MacIel Jr, J.L.B., Ravaro, L.P., Garcia, R.E., Ferreira, V.G., Scalvi, L.V.A.: Numerical simulation of the liquid phase in SnO2 thin film deposition by sol-gel-dip-coating. J. Sol Gel Sci. Technol. 55, 385–393 (2010)Google Scholar
  138. 138.
    Veberš, A., Kunej, S., Cerc Korošc, R., Suvorov, D.: The effects of solvents on the formation of sol-gel-derived Bi12SiO20 thin films. J. Eur. Ceram. Soc. 30, 2475–2480 (2010)Google Scholar
  139. 139.
    Kim, C.Y., Sekino, T., Niihara, K.: Optical, mechanical, and dielectric properties of Bi1/2Na1/2TiO3 thin film synthesized by sol-gel method. J. Sol Gel Sci. Technol. 55, 306–310 (2010)Google Scholar
  140. 140.
    Xu, J.B., Shen, B., Zhai, J.W.: Dielectric, ferroelectric and optical properties of BaZr 0.2Ti0.8O3 thin films prepared by sol-gel-hydrothermal process. J. Sol Gel Sci. Technol. 55, 343–347 (2010)Google Scholar
  141. 141.
    Longley, J.E., Chaudhury, M.K.: Determination of the modulus of thin sol-gel films using buckling instability. Macromolecules 43, 6800–6810 (2010)Google Scholar
  142. 142.
    Perez, J., Vilarinho, P.M., Kholkin, A.L., Almeida, A.: Sol-gel reaction stability studied: influence in the formation temperature and properties of ferroelectric thin films. Mater. Res. Bull. 44, 515–521 (2009)Google Scholar
  143. 143.
    Long, J.W., Qadir, L.R., Stroud, R.M., Rolison, D.R.: Spectroelectrochemical investigations of cation-insertion reactions at sol-gel-derived nanostructured, mesoporous thin films of manganese oxide. J. Phys. Chem. B 105, 8712–8717 (2001)Google Scholar
  144. 144.
    Rivera, D., Harris, J.M.: In situ ATR-FT-IR kinetic studies of molecular transport and surface binding in thin sol-gel films: reactions of chlorosilane reagents in porous silica materials. Anal. Chem. 73, 411–423 (2001)Google Scholar
  145. 145.
    Hasannejad, H., Aliofkhazraei, M., Shanaghi, A., Shahrabi, T., Sabour, A.R.: Nanostructural and electrochemical characteristics of cerium oxide thin films deposited on AA5083-H321 aluminum alloy substrates by dip immersion and sol-gel methods. Thin Solid Films 517, 4792–4799 (2009)Google Scholar
  146. 146.
    Jeong, H., Lee, W.E., Kwak, G.: Enhancements in emission and chemical resistance of substituted acetylene polymer via in situ sol-gel reaction in film. Macromolecules 43, 1152–1155 (2010)Google Scholar
  147. 147.
    Lao, J., Nedelec, J.M., Moretto, P., Jallot, E.: Micro-ion beam analysis of physico-chemical reactions at the interface between sol-gel derived glass particles in the SiO2–CaO system and biological fluids. Surf. Interface Anal. 40, 162–166 (2008)Google Scholar
  148. 148.
    Mutlu, I.H., Acun, H., Celik, E., Turkmen, H.: Preparation of YBa2Cu3O7-x superconducting solutions and films from alkoxide-based precursors using sol-gel method and investigation of their chemical reaction mechanisms. Phys. C Superconduct. Appl. 451, 98–106 (2007)Google Scholar
  149. 149.
    Jallot, E., Nedelec, J.M., Grimault, A.S., Chassot, E., Grandjean-Laquerriere, A., Laquerriere, P., Laurent-Maquin, D.: STEM and EDXS characterisation of physico-chemical reactions at the periphery of sol-gel derived Zn-substituted hydroxyapatites during interactions with biological fluids. Colloids Surf. B Biointerfaces 42, 205–210 (2005)Google Scholar
  150. 150.
    Sun, X., Wang, H., Zhang, H.: Scattering of gaussian beam by a conducting spheroidal particle with confocal dielectric coating. J. Infrared Millim. Terahertz Waves 31, 1100–1108 (2010)Google Scholar
  151. 151.
    Jonsson, A., Roos, A., Jonson, E.K.: The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil. Sol. Energy Mater. Sol. Cells 94, 992–997 (2010)Google Scholar
  152. 152.
    Schroder, S., Herffurth, T., Trost, M., Duparré, A.: Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis. Appl. Opt. 49, 1503–1512 (2010)Google Scholar
  153. 153.
    Wang, M., Zhang, H., Han, Y., Li, Y.: Scattering of shaped beam by a conducting infinite cylinder with dielectric coating. Appl. Phys. B Lasers Opt. 96, 105–109 (2009)Google Scholar
  154. 154.
    Kostanski, L.K., Pope, M.A., Hrymak, A.N., Gallant, M., Whittington, W.L., Vesselov, L.: Development of novel tunable light scattering coating materials for fiber optic diffusers in photodynamic cancer therapy. J. Appl. Polym. Sci. 112, 1516–1523 (2009)Google Scholar
  155. 155.
    Li, Y., Chi, W., Sampath, S., Goland, A., Herman, H., Allen, A.J., Ilavsky, J.: Process-controlled plasma-sprayed Yttria-stabilized zirconia coatings: new insights from ultrasmall-angle X-ray scattering. J. Am. Ceram. Soc. 92, 491–500 (2009)Google Scholar
  156. 156.
    Eldridge, J.I., Spuckler, C.M.: Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings. J. Am. Ceram. Soc. 91, 1603–1611 (2008)Google Scholar
  157. 157.
    Chen, R.T., Muir, B.W., Such, G.K., Postma, A., McLean, K.M., Caruso, F.: Fabrication of asymmetric “janus” particles via plasma polymerization. Chem. Commun. 46, 5121–5123 (2010)Google Scholar
  158. 158.
    Guo, R., Talma, A.G., Datta, R.N., Dierkes, W.K., Noordermeer, J.W.M.: Novel surface modification of sulfur by plasma polymerization and its application in dissimilar rubber–rubber blends. Plasma Chem. Plasma Process. 30, 679–695 (2010)Google Scholar
  159. 159.
    Hua, X., Zhang, T., Ren, J., Zhang, Z., Ji, Z., Jiang, X., Ling, J., Gu, N.: A facile approach to modify polypropylene flakes combining O2-plasma treatment and graft polymerization of l-lactic acid. Colloids Surf. A Physicochem. Eng. Aspects 369, 128–135 (2010)Google Scholar
  160. 160.
    Huang, C., Liu, C.H., Hsu, W.T., Chou, T.H.: Chamberless plasma polymerization of fluorocarbon thin films. J. Non Cryst. Solids 356, 1791–1794 (2010)Google Scholar
  161. 161.
    Jimenez, M., Bellayer, S., Duquesne, S., Bourbigot, S.: Improvement of heat resistance of high performance fibers using a cold plasma polymerization process. Surf. Coat. Technol. 205, 745–758 (2010)Google Scholar
  162. 162.
    Paosawatyanyong, B., Kamphiranon, P., Bhanthumnavin, W.: Coating of polythiophene by microwave plasma polymerization process. In: Key Engineering Materials, pp. 493–498. (2010)Google Scholar
  163. 163.
    Saxena, S., Ray, A.R., Mindemart, J., Hilborn, J., Gupta, B.: Plasma-induced graft polymerization of acrylic acid onto poly(propylene) monofilament: characterization. Plasma Process. Polym. 7, 610–618 (2010)Google Scholar
  164. 164.
    Seo, H.S., Ko, Y.M., Shim, J.W., Lim, Y.K., Kook, J.K., Cho, D.L., Kim, B.H.: Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization. Appl. Surf. Sci. 257, 596–602 (2010)Google Scholar
  165. 165.
    Shao, Z., Ogino, A., Nagatsu, M.: Pre- and post-plasma treatments of polyethylene glycol polymerization on polymer surface for immobilization of L-cysteine. J. Photopolym. Sci. Technol. 23, 561–565 (2010)Google Scholar
  166. 166.
    Shi, L., Liu, Y., Wang, L.: Solvent effects in the polyethylene terephthalate surface modification by cold argon plasma-induced grafting polymerization of methacrylic acid. J. Appl. Polym. Sci. 117, 1460–1468 (2010)Google Scholar
  167. 167.
    Sun, J., Yao, L., Gao, Z., Peng, S., Wang, C., Qiu, Y.: Surface modification of PET films by atmospheric pressure plasma-induced acrylic acid inverse emulsion graft polymerization. Surf. Coat. Technol. 204, 4101–4106 (2010)Google Scholar
  168. 168.
    Tiwari, A., Kumar, R., Prabaharan, M., Pandey, R.R., Kumari, P., Chaturvedi, A., Mishra, A.K.: Nanofibrous polyaniline thin film prepared by plasma-induced polymerization technique for detection of NO2 gas. Polym. Adv. Technol. 21, 615–620 (2010)Google Scholar
  169. 169.
    Zhou, J., Shao, H., Tu, J., Fang, Y., Guo, X., Wang, C.F., Chen, L., Chen, S.: Available plasma-ignited frontal polymerization approach toward facile fabrication of functional polymer hydrogels. Chem. Mater. 22, 5653–5659 (2010)Google Scholar
  170. 170.
    Hasannejad, H., Shahrabi, T., Rouhaghdam, A.S., Aliofkhazraei, M., Saebnoori, E.: Investigation of heat-treatment and pre-treatment on microstructure and electrochemical properties of cerium nano-oxide films on AA7020-T6 by sol-gel methods. Appl. Surf. Sci. 254, 5683–5690 (2008)Google Scholar
  171. 171.
    Galant, C., Fayolle, B., Kuntz, M., Verdu, J.: Thermal and radio-oxidation of epoxy coatings. Prog. Org. Coat. 69, 322–329 (2010)Google Scholar
  172. 172.
    Ma, K., Schoenung, J.M.: Influence of cryomilling on microstructure, phase stability and oxidation behavior of NiCrAlY bond coat in thermal barrier coatings: experimentation and mechanistic investigation. In: Materials Science Forum, pp. 1940–1943. (2010)Google Scholar
  173. 173.
    Mei, H., Cheng, L.F., Liu, Y.N., Zhang, L.T.: Effect of pre-oxidation treatment on the thermal shock resistance of thermal barrier coatings in a combustion gas environment. In: Materials Science Forum, pp. 1924–1927. (2010)Google Scholar
  174. 174.
    Mège-Revil, A., Steyer, P., Cardinal, S., Thollet, G., Esnouf, C., Jacquot, P., Stauder, B.: Correlation between thermal fatigue and thermomechanical properties during the oxidation of multilayered TiSiN nanocomposite coatings synthesized by a hybrid physical/chemical vapour deposition process. Thin Solid Films 518, 5932–5937 (2010)Google Scholar
  175. 175.
    Sniezewski, J., Le Maoult, Y., Lours, P.: Oxidation and spallation of FeCrAl alloys and thermal barrier coatings: in situ investigation under controlled temperature gradient. Mater. High Temp. 27, 101–108 (2010)Google Scholar
  176. 176.
    Braun, R., Schulz, U., Leyens, C., Hovsepian, P.E., Ehiasarian, A.P.: Oxidation and fatigue behaviour of γ-TiAl coated with HIPIMS CrAlYN/CrN nanoscale multilayer coatings and EB-PVD thermal barrier coatings. Int. J. Mater. Res. 101, 648–656 (2010)Google Scholar
  177. 177.
    Li, Z., Bao, R., Zhang, J., Fei, B.: Oxidation study of APS thermal barrier coatings in elevated temperatures. In: Advanced Materials Research, pp. 1546–1549. (2010)Google Scholar
  178. 178.
    Subanovic, M., Song, P., Vassen, R., Naumenko, D., Singheiser, L., Quadakkers, W.J.: Corrigendum to "Effect of exposure conditions on the oxidation of MCrAlY-bondcoats and lifetime of thermal barrier coatings" [Surface & Coatings Technology. Volume 204 (2009) p. 820–823 ( doi: 10.1016/jsurfcoat.2009.09.056)]. Surf. Coat. Technol. 204, 1868 (2010)Google Scholar
  179. 179.
    Gheno, T., Monceau, D., Oquab, D., Cadoret, Y.: Characterization of sulfur distribution in Ni-based superalloy and thermal barrier coatings after high temperature oxidation: a SIMS analysis. Oxid. Met. 73, 95 (2010)Google Scholar
  180. 180.
    Busso, E.P., Evans, H.E., Qian, Z.Q., Taylor, M.P.: Effects of breakaway oxidation on local stresses in thermal barrier coatings. Acta Mater. 58, 1242–1251 (2010)Google Scholar
  181. 181.
    Tien, S.K., Lin, C.H., Tsai, Y.Z., Duh, J.G.: Oxidation behavior, microstructure evolution and thermal stability in nanostructured CrN/AlN multilayer hard coatings. J. Alloys Compd. 489, 237–241 (2010)Google Scholar
  182. 182.
    Taylor, M.P., Jackson, R.D., Evans, H.E.: The effect of bond coat oxidation on the microstructure and endurance of a thermal barrier coating system. Mater. High Temp. 26, 317–323 (2009)Google Scholar
  183. 183.
    Khan, T.I., Saha, G., Glenesk, L.B.: Nanostructured composite coatings for oil sand's applications. Surf. Eng. 26, 540–545 (2010)Google Scholar
  184. 184.
    Floroian, L., Sima, F., Florescu, M., Badea, M., Popescu, A.C., Serban, N., Mihailescu, I.N.: Double layered nanostructured composite coatings with bioactive silicate glass and polymethylmetacrylate for biomimetic implant applications. J. Electroanal. Chem. 648, 111–118 (2010)Google Scholar
  185. 185.
    Zeller, A., Musyanovych, A., Kappl, M., Ethirajan, A., Dass, M., Markova, D., Klapper, M., Landfester, K.: Nanostructured coatings by adhesion of phosphonated polystyrene particles onto titanium surface for implant material applications. ACS Appl. Mater. Interfaces 2, 2421–2428 (2010)Google Scholar
  186. 186.
    Polcar, T., Vitu, T., Cvrcek, L., Novak, R., Vyskocil, J., Cavaleiro, A.: Tribological behaviour of nanostructured Ti–C:H coatings for biomedical applications. Solid State Sci. 11, 1757–1761 (2009)Google Scholar
  187. 187.
    Vallauri, D., Grassini, S., DeBenedetti, B., Alexandra, R.: Fabrication and characterisation of nanostructured coatings by magnetron sputtering for wear resistant applications this paper is dedicated to prof. Enrico evangelista in the occasion of his 70th birthday. In: Materials Science Forum, pp. 3–12. (2009)Google Scholar
  188. 188.
    Souza, F.L., Lopes, K.P., Nascente, P.A.P., Leite, E.R.: Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol. Energy Mater. Sol. Cells 93, 362–368 (2009)Google Scholar
  189. 189.
    Wang, L., Nie, X., Housden, J., Spain, E., Jiang, J.C., Meletis, E.I., Leyland, A., Matthews, A.: Material transfer phenomena and failure mechanisms of a nanostructured Cr–Al–N coating in laboratory wear tests and an industrial punch tool application. Surf. Coat. Technol. 203, 816–821 (2008)Google Scholar
  190. 190.
    Vladescu, A., Kiss, A., Braic, M., Cotrut, C.M., Drob, P., Balaceanu, M., Vasilescu, C., Braic, V.: Vacuum arc deposition of nanostructured multilayer coatings for biomedical applications. J. Nanosci. Nanotechnol. 8, 733–738 (2008)Google Scholar
  191. 191.
    Lima, R.S., Marple, B.R.: Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J. Therm. Spray Tech. 16, 40–50 (2007)Google Scholar
  192. 192.
    Kim, G.E., Walker, J.: Successful application of nanostructured titanium dioxide coating for high-pressure acid-leach application. J. Therm. Spray Tech. 16, 34–39 (2007)Google Scholar
  193. 193.
    Pei, Y.T., Galvan, D., De Hosson, J.T.M., Cavaleiro, A.: Nanostructured TiC/a–C coatings for low friction and wear resistant applications. Surf. Coat. Technol. 198, 44–50 (2005)Google Scholar
  194. 194.
    Nikolić, L.M., Radonjić, L., Srdić, V.V.: Effect of substrate type on nanostructured titania sol-gel coatings for sensors applications. Ceram. Int. 31, 261–266 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Materials Engineering DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations